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Abstract

We propose a framework for out-of-sample predictive ability testing and forecast selection

that is particularly well-suited to the presence of heterogeneity in the data, a plausible feature of

many economic time series. Relative to the existing literature (Diebold and Mariano, 1995 and

West, 1996), we introduce two main innovations: (1) we derive our tests in an environment where

the nite sample properties of the estimators on which the forecasts may depend are preserved

asymptotically; (2) we accommodate conditional evaluation objectives (�“can we predict which

forecast will be more accurate at a future date?�”), which nest unconditional objectives (�“which

forecast was more accurate on average?�”), that have been the sole focus of previous literature.

As a result of (1), our tests have several advantages: they capture the e ect of estimation

uncertainty on relative forecast performance; they can handle forecasts based on both nested and

non-nested models; they allow the forecasts to be produced by general estimation methods, and

they are easy to compute. While both unconditional and conditional approaches are informative,

conditioning can help ne-tune the forecast selection to current economic conditions. To this end,

we propose a two-step decision rule that uses current information to select the best forecast for

the future date of interest. We illustrate the usefulness of our approach by comparing the forecast

performance of three leading parameter-reduction methods for macroeconomic forecasting using

a large number of predictors: a sequential model selection approach, the �“di usion indexes�”

approach of Stock and Watson (2002), and the use of Bayesian shrinkage estimators.
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thank Lutz Kilian for insightful suggestions and Farshid Vahid, Matteo Iacoviello, Mike McCracken, and seminar
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International Finance Division of the Federal Reserve Board, University of Houston, UCLA, Harvard/MIT and the

2002 EC2 conference in Bologna, Italy for helpful comments. The computations in the paper were carried out in the
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1 Introduction

Forecasting is central to economic decision-making. Government institutions and regulatory au-

thorities often base policy decisions on forecasts of major economic variables, and rms rely on

forecasting for inventory management and production planning decisions. A problem economic

forecasters often face is how to evaluate the relative merit of two or more forecast alternatives.

One answer to this problem is to develop out-of-sample tests for comparing the predictive ability

of competing forecasts, given a general loss function. This literature was initiated by Diebold and

Mariano (1995) and further formalized by West (1996), West and McCracken (1998), McCracken

(2000), Clark and McCracken (2001), Corradi, Swanson and Olivetti (2001) and Chao, Corradi and

Swanson (2001), among others. This work represents a generalization of previous evaluation tech-

niques which restricted attention to a particular loss function (e.g., Granger and Newbold, 1977,

Leitch and Tanner, 1991, West, Edison and Cho, 1993, Harvey, Leybourne and Newbold, 1997).

In this paper, we develop a framework for out-of-sample predictive ability testing and forecast

selection that can be applied to multi-step point, interval, probability, or density forecast evaluation

for a general loss function. Our tests are a complement to the existing approach to predictive

ability testing (which in the remainder of the paper we consider to be represented by Diebold and

Mariano, 1995 and West, 1996, henceforth DMW), and at the same time they can be viewed as

a generalization of the DMW tests since they are applicable in all cases in which those tests are

applicable and in many more besides.

We introduce two main methodological innovations: (1) in deriving our tests, we consider

an environment where the nite sample properties of the estimators on which the forecasts may

depend are preserved asymptotically and (2) we formulate the problem of forecast evaluation as a

problem of inference about conditional expectations of forecasts and forecast errors, which nests

the unconditional expectations that are the sole focus of the existing literature. We accordingly

propose two tests: a general test of equal conditional predictive ability of two competing forecasts

and, as a special case, a test of equal unconditional predictive ability. Although the latter coincides

with the test proposed by Diebold and Mariano (1995), we provide primitive conditions that ensure

its validity and extend it to an environment permitting parameter estimation.

Regardless of whether we take a conditional or an unconditional perspective, preserving the nite

sample behavior of the estimators in our evaluation procedure gives our tests several advantages

over existing tests. First, they directly reect the e ect of estimation uncertainty on relative

forecast performance, whereas the DMW tests do not, for example, take into account di ering

model complexities, unless explicitly incorporated into the loss function (e.g., AIC, BIC)1. As a

result, our object of evaluation is not simply the forecasting model as in the DMW approach, but

1A recent paper by Clark and West (2004) suggests an alternative way to overcome this problem in the context

of testing the martingale di erence hypothesis.
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what we call the forecasting method. This includes the forecasting model along with a number

of choices that must be made by the forecaster at the time of the prediction and that can a ect

future forecast performance, such as which estimation procedure to choose and what data to use

for estimation. A second advantage is that our framework permits a unied treatment of nested

and non-nested models, whereas the tests of West (1996) are not applicable to nested models. The

comparison between nested models is important because it is often of interest to test if forecasts from

a given model can outperform those from a nested benchmark model. Third, we can accommodate

general estimation procedures in the derivation of the forecasts, including Bayesian and semi- and

non-parametric estimation methods that are excluded from the DMW framework. A nal, practical

advantage of our tests is that they are easily computed using standard regression software, whereas

the existing tests can be di cult to compute or have limiting distributions that are context-specic

(e.g., the nested test of Clark and McCracken, 2001).

Concerning our second innovation, we emphasize that we are not recommending the conditional

over the unconditional approach. Rather we provide a framework in which both make sense, and it

is up to the researcher to decide which is more appropriate given her objectives. The unconditional

approach asks which forecast was more accurate, on average, in the past; it may thus be appropriate

for making recommendations about which forecast may be better for an unspecied future date.

The conditional approach, instead, asks whether we can use current information - above and beyond

past average behavior - to predict which forecast will be more accurate for a specic future date.

A further contribution is that our tests are derived under the assumption of data heterogeneity,

which is plausibly more realistic than the assumption of stationarity typically made in the litera-

ture. In particular, we allow the data to be characterized by structural shifts at unknown dates.

The assumption of heterogeneity has important consequences for which forecasting methods should

be considered. In heterogeneous environments, the use of an expanding estimation window is not

appropriate, as observations from the distant past at some point lose their predictive relevance. For

this reason, we consider a �“rolling window�” forecasting scheme as a convenient way to handle insta-

bility in the data, and base the forecasts on a (possibly time-varying) moving window of the data

that discards old observations. The choice of the estimation window can be data-driven and there-

fore part of the forecasting method, as in the procedure suggested by Pesaran and Timmermann

(2002). Although our main focus is on the rolling window scheme, our results are also valid for

a �“xed estimation sample�” forecasting scheme, which involves estimating the models�’ parameters

only once over the in-sample data and using these to produce all out-of-sample forecasts.

A nal, important implication of our approach is that it provides a basis for making forecast

selection decisions in cases where equal (conditional) predictive ability is rejected. As an example,

we propose a simple decision rule for forecast selection based on the idea that, since rejection means

that the relative performance of the competing forecasts is predictable, we should exploit current
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information for predicting which forecast will be more accurate in the future.

To illustrate the usefulness of our approach, we consider, from both the conditional and the

unconditional perspectives, the problem of macroeconomic forecasting using a large number of

predictors and compare multi-step forecasts of eight macroeconomic variables (four measures of

real activity and four price indexes) obtained by leading methods for parameter reduction: a

simplied version of the general-to-specic model selection approach of Hoover and Perez (1999),

the �“di usion indexes�” approach of Stock and Watson (2002) and the use of Bayesian shrinkage

estimators (Litterman, 1986). These forecasts cannot be compared using any previous method.

We conclude that for the price indexes these methods are no better than a simple autoregression

whereas for the real variables Bayesian shrinkage is the best performing method. The simplied

general-to-specic method is characterized by an overall poor performance.

2 A new approach to out-of-sample predictive ability testing

In this section, we set forth our approach and discuss the main di erences between our approach

and previous approaches to out-of-sample predictive ability testing.

2.1 Null hypothesis and asymptotic framework

Suppose one wants to compare the accuracy of competing forecasts ( 1) and ( 2) for the steps

ahead variable + using a loss function + (·). The DMW approach tests:

0 : [ + ( + ( 1)) + ( + ( 2))] = 0 (1)

where 1 and 2 are population values (i.e., probability limits of the parameter estimates). This

makes (1) a statement about the forecasting models : 0 says that the models are equally accurate

on average. A key feature of West�’s (1996) test of 0 is the recognition and accommodation of

the fact that, although 0 concerns population values, the actual forecasts appearing in the test

statistic depend on estimated parameters.

Our central idea is to test a null hypothesis that di ers from the DMW null in two respects:

(1) the losses depend on estimates �ˆ1 and �ˆ2 rather than on their probability limits; and (2) the

expectation is conditional on some information set G :

0 : [ + ( + (�ˆ1 )) + ( + (�ˆ2 ))|G ] = 0 (2)

The focus on parameter estimates makes (2) a statement about the forecasting methods, which

include the models as well as the estimation procedures and the possible choices of estimation

window. Our null says that one cannot predict which forecasting method will be more accurate at

the forecast target date + using the information in G .
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Regardless of the choice of G , expressing the null in terms of parameter estimates is useful be-

cause it allows us to capture the impact of estimation uncertainty on relative forecast performance.

For example, by comparing expected estimated Mean Squared forecast Errors (MSE), rather than

their population counterparts, we accommodate the possibility of a bias-variance tradeo such that

forecasts from a small, misspecied model (biased with low variance) are as accurate as forecasts

from a large, correctly specied model (unbiased with high variance). Because of its focus on the

forecasting model rather than the forecasting method, the DMW approach cannot accommodate

such a tradeo . This emphasizes the distinction between evaluation of a forecasting method, which

is a practical matter, and evaluation of a forecasting model, which may be appropriate for obtaining

economic insight, but is less informative for prediction purposes.

An implication of testing di erent null hypotheses is that the tests of (1) and (2) are analyzed

in di erent out-of-sample asymptotic environments. Whereas the test of West (1996) is analyzed

in an environment where parameter estimates converge to their population values, we operate in

an environment with asymptotically non-vanishing estimation uncertainty. This ensures that our

tests capture the impact of estimation uncertainty on forecast performance. Further, as we discuss

in detail in Section 3.2, this has the important advantage that our tests can handle nested and

non-nested models in a unied framework.

We achieve non-vanishing estimator uncertainty by considering estimators with limited memory,

in particular, �“rolling window�” estimators, a method popular among practitioners ever since its

inuential use by Fama and MacBeth (1973) and Gonedes (1973). Limited memory estimators are

especially appropriate in the heterogeneous data environments considered here, as they discount

or exclude older data that may no longer be informative about the predictive relations of current

interest. Other relevant limited memory estimators are recursive estimators of the exponential

smoothing type or, as suggested by a referee, expanding window weighted least squares estimators

with weights that more heavily discount less recent observations. We work explicitly with rolling

window estimators not only because of their popularity among practitioners, but also for two

further reasons: rst, this approach a ords signicant generality, as it imposes no restrictions on

the estimators other than nite memory, whereas the alternatives are comparatively specic; and

second, the analysis required for this approach is straightforward, whereas that for the alternatives

is more involved, but without a compensating increase in insight.

In stationary environments, limited memory estimators have the disadvantage of ine ciency.

It is, however, an empirical question as to whether a given data-generating process is stationary

or heterogeneous. Evidence provided by Clements and Hendry (1998, 1999) strongly suggests that

heterogeneity is often present in economic time series. Interestingly, our procedures can o er direct

evidence as to the advantages or disadvantages of limited memory estimators, thus permitting the

user to avoid their inappropriate application. We provide further discussion below.
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Regarding the choice of the conditioning set G a leading case of interest is G = F , the time-

information set. Another possibility is G ={ } the trivial eld, which yields a test of equal

unconditional predictive ability. The choice of the relevant conditioning set will depend on the

objectives of the evaluator. Letting G ={ } seems appropriate if the goal is to provide a forecast

for an unspecied date in the future, in which case it makes sense to base recommendations on

which forecast may be better on average. If on the other hand the goal is to produce a forecast for

a specic date periods in the future, choosing G = F may be more appropriate, since it allows us

to ask whether there is additional current information that can help predict which forecast will be

more accurate for that date. Conditioning (i.e., letting G 6={ }) when testing relative forecast

performance is important, as it is plausible to expect some predictability in future loss di erences.

For example, one may expect the relative performance to be characterized by persistence, so that

if a forecast outperforms its competitor today it may be likely to do so tomorrow. In this case,

past loss di erences may predict future loss di erences. We may also expect the performance of

certain models to depend the state of the economy, so that a business cycle indicator may tell us

which forecast is preferable for a future date, given current economic conditions.

Even though our framework nests both conditional and unconditional objectives, for succinct-

ness we refer to a test of (2) as a test of equal conditional predictive ability.

2.2 Data assumptions

One of the conclusions of Clements and Hendry (1998, 1999) is that the main explanation for sys-

tematic forecast failure in economics is a non-constant data-generating process for the variables to

be forecast. In this paper, we therefore work with the assumption that the data generating process

is heterogeneous, which, in our view, is a more realistic and practical assumption for economic

forecasting contexts than the assumption of stationarity typically made in the predictive ability

literature.2 Specic sources of heterogeneity in the series that economists forecast are several.

First, even if the underlying economic processes were stationary, heterogeneity in the observed

time series can arise from changes in the measurement process. This source of heterogeneity is one

that macroeconomic variables are particularly sensitive to (among other things, the denition of

the measured variables and which entities are measured in constructing the variables may change).

These sources of heterogeneity are plausibly less a concern for non-aggregated time series, such as

the prices of well-dened commodities, as in nancial economics. Nevertheless, the underlying eco-

nomic processes include a variety of forces that a ect either the nature of the commodity itself (the

laws governing the behavior of rms represented by equity assets change, as do market conditions

and technologies used by such rms), or the way the commodity is traded. Taken together, these

2The type of non-stationarity we consider here is that induced by distributions that change over time. We also

assume short memory, thus ruling out non-stationarity due to the presence of unit roots.
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factors make it plausible that the relations between variables of interest relevant for forecasting

could be di erent now than they were last year, let alone ve, ten, or twenty years ago, and are

not plausibly identical, as stationarity would require.

If heterogeneity is present in an economic time series, suitable methods for model-based forecast-

ing and forecast evaluation need to be applied. In general, it seems appropriate in a time-varying

environment to construct forecasts using estimators with limited memory, rather than using all

available data. An example is the popular practice of specifying and estimating forecasting mod-

els over a rolling window of the data, which is the approach that we adopt here. A consequence

of this is that the estimation window must be treated as a choice variable to be evaluated along

with the forecasting model and the estimation procedure as parts of the forecasting method under

analysis. In contrast, in the DMW framework the sample split between estimation (in-sample) and

evaluation (out-of-sample) portions is arbitrary.

3 Theory

3.1 Description of the environment

Consider a stochastic process { : R +1 N = 1 2 } dened on a complete

probability space ( F ) We partition the observed vector as ( 0)0, where :

R is the variable of interest and : R is a vector of predictor variables, and we dene

F = ( 0
1

0 0
+1)

0 (as in, e.g., White, 1994, pg. 96). We adopt the standard convention of

denoting random variables by upper case letters and realizations by lower case letters.

We focus for simplicity on univariate forecasts. Suppose two alternative models are used to

forecast the variable of interest steps ahead, + . The (point, interval, probability, or density)

forecasts formulated at time are based on the information set F and are denoted by �ˆ

( 1 +1; �ˆ ) and �ˆ ( 1 +1; �ˆ ), where and are measurable

functions. The subscripts indicate that the time- forecasts are measurable functions of a sample

of size consisting of the most recent observations

If the forecasts are based on parametric models, the parameter estimates from the two models

are collected in the × 1 vector �ˆ . Otherwise, �ˆ represents whatever semi-parametric or

non-parametric estimators are used in constructing the forecasts. Note that we allow for general

estimation procedures. The only requirement is that the estimation window size must be nite.

We view as either a method-specic constant or a possibly time-dependent random integer

determined by the forecasting method. For technical convenience, we require that ¯ a nite

constant (this can be relaxed, but at the cost of an explosion of technicality). For example, a

data-driven choice of is given by the procedure suggested by Pesaran and Timmermann (2002).

The requirement that ¯ be nite rules out an expanding window forecasting scheme. In principle,

7



however, our framework can also handle expanding estimation window procedures with observations

weights that suitably discount older observations, such as recursive estimators of the exponential

smoothing type, with smoothing parameter bounded away from zero. We take this up elsewhere.

We perform the out-of-sample evaluation using a �“rolling�” window estimation scheme. Let

be the total sample size and 1 the size of the rst estimation window. We formulate the rst

step ahead forecasts at time 1 using data indexed 1 1 and compare these forecasts to the

realization 1+ .
3 At time 1+1 we formulate the second set of forecasts using the previous 2

observations, where 2 can be di erent from 1 We compare the second set of forecasts to the

realization 1+1+ We thus iterate the procedure and obtain the last forecasts at time by

utilizing the 1+1 most recent observations and compare the forecasts to This yields a

sequence of 1 + 1 out-of-sample forecasts and relative forecast errors. Even though

the estimation window lengths can vary over time, for simplicity we express each forecast as a

function of ( ¯ ) which can be thought of as the maximum of all �’s.

Note that the requirement that ¯ be nite is also compatible with a xed estimation sample

forecasting scheme, where the parameters are estimated only once on the rst 1 observations

and used to produce all out-of-sample forecasts. In this case �ˆ = �ˆ
1 1

, 1 6 6 1

For clarity of exposition, in the remainder of the paper we restrict attention to a rolling window

forecasting scheme, but all results are valid for a xed estimation sample scheme.

The elements above - the model, the estimation procedure and the size of the estimation window

- are dimensions of choice by the user and are part of the forecasting method under evaluation.

We evaluate the sequence of out-of-sample forecasts by a loss function + ( +
�ˆ ) that

depends on the forecasts and on the realizations of the variable. This loss function is either an

economically meaningful criterion such as utility or prots (e.g., Leitch and Tanner, 1991, West,

Edison, and Cho, 1993) or a statistical measure of accuracy. The following are some examples of

statistical loss functions that have been considered in the forecast evaluation literature. Examples

of appropriate loss functions for the evaluation of quantile, probability, and density forecasts are

also discussed in Diebold and Lopez (1996), Giacomini and Komunjer (in press) and Giacomini

(2002). For simplicity, let �ˆ and = 1

1. Squared error loss function: +1( +1 ) = ( +1 )2

2. Absolute error loss function: +1( +1 ) = | +1 |

3. Asymmetric linear cost function of order (also known as the lin-lin or �“tick function�”):

+1( +1 ) = ( 1( +1 0))( +1 ) for (0 1).

4. Linex loss function: +1( +1 ) = exp( ( +1 )) ( +1 ) 1 R
3 If the two forecasts are based on estimation windows of di erent lengths, we let 1 be the maximum of the two.
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5. Direction-of-change loss function: +1( +1 ) = 1{ ( +1 ) 6= ( )}.

6. Predictive log-likelihood: +1( +1 ) = log ( +1) with the density forecast of +1

For a given loss function and eld G , we write the null hypothesis of equal conditional

predictive ability of forecasts and for the target date + as

0 : [ + ( +
�ˆ ) + ( + �ˆ )|G ] (3)

[ + |G ] = 0 almost surely = 1 2 .

In writing (3), we are adopting the convention that �ˆ and �ˆ are measurable-F Note that we

do not require G = F although this is a leading case of interest that we analyze in the next two

sections. We separately address the case G ={ } in a subsequent section.

3.2 One-step conditional predictive ability test

When = 1 and G = F , the null hypothesis (3) claims that the out-of-sample sequence { F }

is a martingale di erence sequence (mds). In this case, the conditional moment restriction (3) is

equivalent to stating that [�˜ +1] = 0 for all F measurable functions �˜ We restrict

attention to a given subset of such functions, which we collectively denote by the × 1 F

measurable vector and follow Stinchcombe and White (1998) by referring to this as the �“test

function�”. For a given choice of test function , we construct a test exploiting the consequence of

the mds property that 0 : [ +1] = 0

Standard asymptotic normality arguments suggest using a Wald-type test statistic of the form

= ( 1
1X

=

+1)
0 �ˆ 1( 1

1X

=

+1) = ¯0 �ˆ 1 ¯ (4)

where ¯ 1
P 1

= +1 +1 +1 and �ˆ 1
P 1

= +1 +1
0 is a ×

matrix consistently estimating the variance of +1

A level test can be conducted by rejecting the null hypothesis of equal conditional predictive

ability whenever 2
1 , where 2

1 is the (1 ) quantile of a 2 distribution The

asymptotic justication for the test is provided in the following theorem, which characterizes the

behavior of the test statistic (4) under the null hypothesis.

Theorem 1 (One-step conditional predictive ability test) For forecast horizon = 1 (max-

imum) estimation window size ¯ and × 1 test function sequence { } suppose:

(i) { } { } are mixing with of size (2 1) 1 or of size ( 1), 1;

(ii) | +1 |2( + ) for some 0 = 1 and for all ;

(iii) 1
P 1

= [ +1
0

+1] is uniformly positive denite.

Then, under 0 in (3) 2 as
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Comments: 1. Assumption (i) is mild, allowing the data to be characterized by considerable

heterogeneity as well as dependence. This is in contrast with the existing literature, which typically

assumes stationarity of the loss di erences. In particular, we allow the data to be characterized by

arbitrary structural changes at unknown dates.

2. The asymptotic distribution is obtained for the number of out-of-sample observations going

to innity, whereas the maximum estimation sample size is nite. This leads to asymptotically

non-vanishing estimation uncertainty. In contrast, in the framework of West (1996), both the in-

sample and the out-of-sample sizes grow, causing estimation uncertainty to vanish asymptotically.

As a result, in the DMW framework the choice of how to split the sample into in-sample and

out-of-sample portions is arbitrary, whereas here the choice of estimation window is part of the

forecasting method under evaluation.

3. The use of an expanding window forecasting scheme is ruled out by our assumption of

nite estimation window. This assumption is motivated by our explicit allowance for heterogeneity

in the data, and it further serves the purpose of creating an environment with asymptotically

non-vanishing estimation uncertainty. Such an environment could also be obtained by assuming an

expanding window whose size grows more slowly than the out-of-sample size or - as we mentioned in

Section 3.1 - by considering an expanding window associated with exponential smoothing recursive

estimators with smoothing parameter bounded away from zero.

4. Assumption (iii), imposing positive deniteness of the asymptotic variance of the test sta-

tistic, is related to a similar requirement made in the existing predictive ability testing literature

(e.g., West, 1996, McCracken, 2000), but it di ers in a fundamental way. In that literature, the

asymptotic variance of the test statistic is computed at the probability limits of the parameters,

which may cause singularity when the forecasts are based on nested models. In contrast, in our

framework the presence of non-vanishing estimation uncertainty prevents such singularity and thus

makes our tests applicable to both nested and non-nested models.

5. In the construction of the test statistic we exploit the simplifying feature that the null

hypothesis imposes the time dependence structure of an mds, which implies that the asymptotic

variance can be consistently estimated by the sample variance. As suggested by a referee, one could

instead use a heteroskedasticity and autocorrelation consistent (HAC) estimator (e.g., Andrews,

1991) in the construction of the test. This leaves the asymptotic distribution of the test statistic

under the null hypothesis unchanged and results in a test with correct size. We prefer to exploit the

mds structure, however, as this not only yields a simpler test, but it may also increase power. The

reason for this is that the asymptotic power depends on the asymptotic variance, and the smaller

is the variance the more powerful is the test. If, as is often plausible under the alternative, there is

positive autocorrelation in the loss di erences that the HAC estimator accounts for, then the HAC

estimator will be larger and the asymptotic power correspondingly lower.
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6. As pointed out by a referee, the same theory outlined in Theorem 1 can be applied to testing

for conditional bias, e ciency, and encompassing, provided the assumptions of the theorem are

satised. One simply replaces +1 by a suitable function of +1 and the forecasts. Conditional

encompassing for quantile forecasting, in particular, is explored by Giacomini and Komunjer (in

press).

The following results provide computationally convenient ways to perform the one-step condi-

tional predictive ability test using standard regression packages.

Corollary 2 Under the assumptions of Theorem 1, the test statistic can be alternatively

computed as 2, where 2 is the uncentered squared multiple correlation coe cient for the articial

regression of the constant unity on the 1× vector ( +1)
0 for = 1 A level test

can be conducted by rejecting the null hypothesis 0 of equal conditional predictive ability whenever
2 2

1 , where 2
1 is the (1 ) quantile of a 2 distribution.

Corollary 3 Let assumptions (i), (iii) and (iv) of Theorem 1 hold and further assume

(ii)0 | +1|2( + 1)
1 and | |2( + 2)

2 for some 1 2 0 = 1

and for all ;

(v) [( +1)
2|F ] = 2 for all and some 2 0

Then the one-step conditional predictive ability test can be alternatively based on the test statistic
2, where 2 is the uncentered squared multiple correlation coe cient for the articial regression

of +1 on the 1× vector 0 for = 1 A level test can be conducted by rejecting

the null hypothesis 0 of equal conditional predictive ability whenever 2 2
1 , where 2

1

is the (1 ) quantile of a 2 distribution.

If the conditional homoskedasticity assumption (v) can be reasonably expected to hold, the

true distribution of the 2 statistic in Corollary 3 may be better approximated by its asymptotic

distribution than the statistic of Corollary 2, and might thus deliver better inference.

3.2.1 Alternative hypothesis

We now analyze the behavior of the test statistic under a form of global alternative to 0.

Because we do not impose the requirement of identical distribution, we must exercise care in

specifying the global alternative in this context. In fact, our test is consistent against

: [ ¯0 ] [ ¯ ] 0 for all su ciently large (5)

The following theorem characterizes the behavior of under the global alternative

Theorem 4 Given Assumptions (i), (ii) and (iii) of Theorem 1, under in (5) for any constant

R [ ] 1 as
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Note that 0 and are not necessarily exhaustive. For a given choice of { } it may in fact

happen that [ ¯0 0 ] [ ¯ 0 ] = 0 for some sequence { 0} without { +1} being an mds and

thus the test may have no power against alternatives for which +1 is correlated with some

element of F that is not contained in The exibility in the choice of test function is both a

shortcoming and an advantage of our testing framework. On the one hand, for a given the test

may have no power against possibly important alternatives. On the other hand, one is left free to

choose which test function is more relevant in any situation and thus focus power in that direction.

In practice, the test function is chosen by the researcher to embed elements of the information

set F that are thought to help distinguish between the forecast performance of the two methods.

Examples are, e.g., indicators of past relative performance (lagged loss di erences or moving av-

erages of past loss di erences) or business cycle indicators that may capture possible asymmetries

in relative performance during booms and recessions. When choosing the number of elements for

, one should keep in mind that the properties of the test will be altered if one either includes too

few or too many elements. If leaves out elements of the information set F that are correlated

with +1 the test may incorrectly �“accept�” a false null hypothesis. On the other hand, the

inclusion of a number of elements that are either uncorrelated or weakly correlated with +1

will in some sense dilute the signicance of the important elements and thus erode the power of

the test. A possible way to confront this di culty is to apply the approaches advocated by Bierens

(1990) or Stinchcombe and White (1998), which deliver consistent tests.

3.3 Multi-step conditional predictive ability test

For a forecast horizon 1 and with G = F , the null hypothesis (3) implies that for all

F measurable test functions the sequence { + } is �“nitely correlated�”, so that

( + + ) = 0 for all Similarly to the previous section, we exploit

this simplifying feature in the construction of the test statistic. Using reasoning that mirrors the

development of the test for the one-step horizon, we consider the test statistic

= ( 1
X

=

+ )
0 �˜ 1( 1

X

=

+ ) = ¯0 �˜ 1 ¯ (6)

where is a × 1 F measurable test function; ¯ 1
P

= + + +

and �˜ 1
P

= +
0

+ + 1
P 1

=1

P
= + [ +

0
+ + +

0
+ ]

with a weight function such that 1 as for each = 1 1 (e.g., Newey and

West, 1987 and Andrews, 1991)

A level test rejects the null hypothesis of equal conditional predictive ability whenever
2
1 , where 2

1 is the (1 ) quantile of a 2 distribution The following result is the

equivalent of Theorems 1 and 4 for the multi-step forecast horizon case.
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Theorem 5 (Multi-step conditional predictive ability test) For given forecast horizon

1 (maximum) estimation window size ¯ and a ×1 test function sequence { } suppose:

(i) { } { } are mixing with of size (2 2) 2 or of size ( 2), 2;

(ii) | + | + for some 0 = 1 and for all ;

(iii) 1
P

= [ +
0

+ ]+
1
P 1

=1

P
= + ( [ +

0
+ ]+ [ +

0
+ ])

is uniformly positive denite.

Then, (a) under 0 in (3) 2 as and (b) under in (5) for any constant

R [ ] 1 as

3.4 Multi-step unconditional predictive ability test

When G is the trivial eld G ={ } and for forecast horizon 1 the null hypothesis (3)

can be viewed as a test of equal unconditional predictive ability of forecasting methods and ,

0 : [ + ] = 0 = 1 2 against the alternative

:
¯̄
[ ¯ ]

¯̄
0 for all su ciently large, (7)

where ¯ 1
P

= + The test is based on the statistic

=
¯

�ˆ
(8)

where �ˆ2 is a suitable HAC estimator of the asymptotic variance 2 = [ ¯ ], for example

�ˆ2 1
P

=
2

+ + 2
h

1
P

=1

P
= + + +

i
with { } a sequence

of integers such that as , = ( ) and { : = 1 2 ; = 1 } a

triangular array such that | | = 1 2 = 1 and 1 as for each

= 1 (cf. Andrews, 1991).

A level test rejects the null hypothesis of equal unconditional predictive ability whenever

| | 2, where 2 is the (1 2) quantile of a standard normal distribution. The test

statistic coincides with that proposed by Diebold and Mariano (1995). The following theorem

can thus be viewed as providing primitive conditions that not only ensure the validity of Diebold

and Mariano�’s (1995) test, but extend its validity to a framework permitting parameter estimation.

Theorem 6 (Unconditional predictive ability test) For given forecast horizon 1 and

(maximum) estimation window size ¯ suppose:

(i) { } is a mixing with of size (2 2) 2 or of size ( 2), 2;

(ii) | + |2 for all ;

(iii) 2 [ ¯ ] 0 for all su ciently large.

Then, (a) under 0 in (3) (0 1) as and (b), under in (7) for any

constant R [| | ] 1 as

13



Note that, whereas for the conditional test the truncation lag for the HAC estimator is = 1

for the unconditional test we require as ; thus in practice this must be selected

by the user. The reason is that the unconditional null hypothesis, unlike the conditional null

hypothesis, does not impose any particular dependence structure on the loss di erences. Since the

loss di erences are mixing variables, an HAC estimator with is needed for consistency.

Nevertheless, in practical applications it is often the case that short truncation lags improve the

nite-sample properties of the Diebold and Mariano (1995) test (see e.g., Clark, 1999).4 Our

simulations in Section 5 provide additional evidence on this point.

4 A decision rule for forecast selection

An appealing practical consequence of adopting a conditional perspective when comparing the

performance of competing forecasts is that it can provide a basis for making forecast selection

decisions. The topic of what to do when equal performance is accepted or rejected is still relatively

unexplored in the existing predictive ability testing literature. For example, there is no guidance

in that literature as to what to do in case of acceptance of equal unconditional performance. When

adopting a conditional perspective, instead, both acceptance and rejection of the null hypothesis

may be starting points for real-time forecast selection. In case of acceptance, forecast combination

seems to be a natural candidate, as was noted by a referee. If, on the other hand, one of the

competing methods is already a forecast combination, the principle of parsimony suggests using

the simpler method. We leave further consideration of this issue for future work.

In this section, we focus instead on the implications of rejecting equal conditional predictive

ability and describe a simple method for adaptively selecting at time a forecasting method for

+ . The basic idea is that rejection occurs because the test functions { } can predict the loss

di erences { + } out-of-sample, which suggests using to predict which method will yield

lower loss at + We propose the following two-step procedure:

1. Regress + = + ( +
�ˆ ) + ( + �ˆ ) on over the out-of-sample period

= and let �ˆ denote the regression coe cient Apply Theorem 5 to establish

whether �ˆ is signicantly di erent from zero. If so, proceed to step 2.

2. The approximation �ˆ 0 [ + |F ] motivates the decision rule: use if �ˆ 0

and use if �ˆ 0 with a user-specied threshold (e.g., = 0).

We o er this procedure as a simple example of how our tests can be used in forecast selection.

4Diebold and Mariano (1995) also acknowledge that step-ahead errors may not be ( 1)-dependent, but nd

that the assumption of ( 1)-dependence works well in practical applications and suggest using it as a benchmark.

In the remainder of the paper, we adopt this approach.
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More sophisticated approaches immediately suggest themselves, but the subject of forecast selection

is a signicant topic that deserves extensive focused attention, beyond that possible in the space

available here. Accordingly, we restrict attention here to this simple procedure and take up more

elaborate methods and their application elsewhere.

In general, the plot of out-of-sample period predicted loss di erences
©
�ˆ 0

ª
=

is useful for

assessing the relative performance of and at di erent times One can further summarize relative

out-of-sample performance by computing the proportion of times the above decision rule chooses

, i.e., = 1
P

= 1{�ˆ 0 } where 1{ } equals 1 if is true and 0 otherwise. We report

these proportions for our empirical application in Section 6.

5 Monte Carlo evidence

We investigate the size and power properties of the tests of conditional and unconditional predictive

ability in nite samples of the sizes typically available in macroeconomic forecasting applications.

5.1 Size properties

The goal of our rst Monte Carlo experiment is two-fold: rst, to consider a situation where our

null hypothesis of equal forecasting method accuracy is satised when comparing nested models

and second, to contrast our test with tests for equal forecasting model accuracy previously available

(McCracken, 1999 and Clark and McCracken, 2001). We highlight the exibility of our approach

by presenting results for both a quadratic and a linex loss function. For comparability, we restrict

attention in this subsection to the unconditional test and to the one-step forecast horizon.

The idea is to consider a situation where the tradeo between misspecication and parameter

estimation uncertainty is such that forecasts from a small, misspecied model are as accurate as

those from a larger, correctly specied model. Thus, let the data-generating process (DGP) be:

= + + (0 2) (9)

where is the second log-di erence of the monthly U.S. consumer price index over the pe-

riod 1959:1-1998:12. We use an actual time series in order to create data that exhibit realistic

heterogeneous behavior. 5 The two competing forecasting models are:

1 : = + 1

2 : = + + 2

5To assess the heterogeneous behavior of we performed the Andrews-Ploberger (1994) test for a structural

break in the unconditional mean and in the rst autoregressive coe cient of . The test detected no breaks in

mean but found evidence of a break in the autoregressive coe cient (the p-value for the test of no break was 0.056).
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The one-step-ahead forecasts of +1 implied by the two models are, respectively,

�ˆ(1) = �ˆ
+1 (10)

�ˆ(2) = �ˆ + �ˆ +1

estimated by OLS over a sample of size . Here and in the following, we treat as known.

For each pair of estimation window size and out-of-sample size in the range (25 50 150)

we nd values of in (9) such that the two forecasting methods have equal expected MSE, using

the following result.

Proposition 7 Let ; ¯ 1 P
= +1 ;

P
= +1

2 ¯ 2;
P P 1

=

and
P P

= +1 If

=

vuuuuuut

P
µP

2

+
2
+1 2

¯
+1

2
+1P
2

¶

P
µ
1

P
P

2 +1

¶2 (11)

then
h
1P ( +1

�ˆ(1) )
i
=

h
1P ( +1

�ˆ(2) )
i
, where ( +1 ) = ( +1 )2

Using from Proposition 7, = 1 and the last = + observations, we generate 5000

Monte Carlo replications of from (9) and compute rolling window forecasts as in (10).

To examine the robustness of the size properties of our test to the choice of loss function and

illustrate the exibility of our method, we further consider a linex loss function. We generate

5000 replications of from (9) as described above, using values of such that the two forecasting

methods have equal expected average linex loss, obtained as follows.

Proposition 8 Using the notation of Proposition 7, if solves ( ) = 0 where

( )
X

(

exp

" Ã

1

P
P

2 +1

!

+
2

2

Ã

1 +
2
+1P
2

!# Ã

1

P
P

2 +1

!

(12)

exp

"
2

2

Ã

1 +

P
2

+
2
+1 2

¯
+1

!#)

then
h
1P ( +1

�ˆ(1) )
i
=

h
1P ( +1

�ˆ(2) )
i
, with ( +1 ) = exp( +1 ) ( +1

) 1

We nd values of that solve the equation in Proposition 8 by numerical techniques. Table 1

reports the rejection frequencies of the hypotheses of equal forecasting method accuracy using

quadratic and linex loss for a 5% nominal level using the test of Theorem 6. The truncation lag for
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the HAC estimator is = 0 6 For the quadratic loss, the table also shows the rejection frequencies

for the test of equal forecasting model accuracy of McCracken (1999) and Clark and McCracken

(2001) (henceforth the CM test), which relies on the same test statistic but uses critical values

obtained by simulation from a non-standard asymptotic distribution. For linex loss, the CM test

cannot be applied as it requires the same loss function for estimation and evaluation, whereas we

estimate by OLS and not by linex maximum likelihood. [TABLE 1 HERE]

The table reveals that our test is generally well-sized, particularly when the estimation window

is small relative to the out-of-sample size (for given , the size tends to improve as increases)

This is true for both quadratic and linex loss functions, although for the linex loss the test appears to

be slightly oversized. Before discussing the rejection frequencies of the CM test, we emphasize that

these do not represent the empirical size of the CM test, since this tests a di erent null hypothesis:

for CM the losses are functions of population values of the parameters rather than parameter

estimates, so the CM test is focused on the forecasting model rather than the forecasting method.

Table 1 shows that in our scenario the CM test rejects the hypothesis that the forecasting models

are equally accurate in favor of the larger model7 more often than our test rejects its null hypothesis.

In other words, by rejecting its null hypothesis relatively more frequently, the CM test signals that

the larger forecasting model is superior in cases where the forecasting method based on the larger

model is not superior. The disparity of conclusions between the two tests is greater when is

small relative to (our test rejects 5% of the time whereas the CM test rejects up to 50% of the

time). Interestingly, the two tests have comparable rejection frequencies when is equal to .

5.2 Power properties

We next investigate the power of our unconditional and conditional predictive ability tests in two

directions: (1) against serially correlated loss di erences; and (2) against the performance being

di erent in di erent states of the economy.

5.2.1 Power against serial correlation in relative performance

Here we consider the alternative that the loss di erences +1 follow an AR(1) process:

+1 = (1 ) + + +1 +1 (0 1) (13)

For each of 5000 Monte Carlo replications, we use (13) to generate a sequence of loss di erences

of length = 150 starting from an initial value that equals the di erence in squared

6We also considered selecting using either the data-dependent method of Andrews (1991) or the popular simple

alternative = 75 1 3 satisfying Andrews�’ (1991) optimal rate condition. The results, available upon request,

suggest these alternative choices lead to slightly worse size properties, even though in the majority of cases Andrews�’

method selected = 0 as the optimal bandwidth.
7The alternative hypothesis for the CM test is that the larger model is more accurate.
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errors for forecasts of 1998:12 implied by (i) a white noise and (ii) an AR(1) model for

estimated over a window of size = 150 using data up to 1998:11. We consider two scenarios:

(1) the loss di erences are not serially correlated ( = 0) but have non-zero unconditional mean;

(2) the loss di erences have zero unconditional mean ( = 0) but are serially correlated (and thus

the unconditional null hypothesis is still satised). The corresponding parameterizations are: (1)

= 0 = (0 0 05 1); and (2) = 0 = (0 0 05 0 9)

Figure 1 shows the power curves of the tests of Theorems 1 (conditional) and 6 (unconditional)

in scenarios (1) and (2) above computed as the proportion of rejections of the null hypotheses

0 and 0 at the 5% nominal level. In all cases, we let = (1 )0 for the conditional

test and = 0 for the unconditional test. [FIGURE 1 HERE]

The left panel of Figure 1 reveals that using the conditional rather than the unconditional test

even though there is no serial correlation in the loss di erences involves only a small loss of power.

From the right panel of Figure 1, on the other hand, we see that the conditional test has appealing

power properties but that the unconditional test su ers severe size distortions as the loss di erences

become more serially correlated (the power curve is upward sloping, whereas it should be at since

0 is satised), a possible consequence of not using a more involved method for choosing

5.2.2 Power against di erent performance in di erent states

We next consider a situation where the two forecasts have equal predictive ability unconditionally,

but each forecast is more accurate in a given state of the economy. For each of 5000 Monte Carlo

replications, we generate a sequence of loss di erences of length = 150 as follows:

+1 =
(1 )

( ) + +1 +1 (0 1)

where = 1 with probability and = 0 with probability 1 We thus have [ +1] = 0

but [ +1| ] =

(
if = 1

(1 ) if = 0
so that forecast 2 is more accurate in the rst

state and forecast 1 is more accurate in the second state. Figure 2 shows the rejection frequencies

of the null hypotheses 0 and 0 at the 5% nominal level using the tests of Theorems 1

and 6. The power curves are obtained for = 5 and (1 ) = (0 0 1 1) ( represents the

di erence in expected loss between the two states). We let = (1 )0 for the conditional test and

= 0 for the unconditional test. [FIGURE 2 HERE]

As expected, the conditional test has power to detect di erent performance in the di erent

states, whereas the rejection frequencies for the unconditional test remain constant at the empirical

size. Unlike the previous case, the unconditional test does not su er size distortion.
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6 Application: comparing parameter-reduction methods

A problem that often arises in macroeconomic forecasting is how to select a manageable subset of

predictors from a large number of potentially useful variables. In this situation, one key determinant

of the resulting forecast performance is the trade-o between the information content of each

series and the estimation uncertainty introduced. The goal of our application is to analyze and

compare the forecast performance, both conditionally and unconditionally, of three leading methods

for parameter reduction: a sequential model-selection approach based on a simplied general-to-

specic modelling strategy (Hoover and Perez, 1999), the �“di usion indexes�” approach of Stock

and Watson (2002), and the use of Bayesian shrinkage estimation (Litterman, 1986). We also

compare each method to simple autoregressive and random walk benchmark forecasts. The DMW

testing framework cannot be used here since some of the comparisons are between nested models

and, further, that framework does not easily accommodate Bayesian estimation or the presence

of estimated regressors. In contrast, our approach is well suited for comparison of methods based

on nested models and for detecting di erences in predictive ability arising from use of di erent

modelling and estimation techniques.

We consider the �“balanced panel�” subset of the data set of Stock and Watson (2002) (henceforth

SW), including 146 monthly economic time series measured over the period 1959:1-1998:12. We

use the di erent parameter reduction methods to construct 1-, 6- and 12- month-ahead forecasts

for eight U.S. macroeconomic variables: four measures of aggregate real activity and four price

indexes. The rst group includes the components of the Index of Coincident Economic Indicators

maintained by the Conference Board: total industrial production; real personal income less trans-

fers; real manufacturing and trade sales; and number of employees on nonagricultural payrolls.

The price indexes are: consumer price index; consumer price index less food; personal consumption

expenditure implicit price deator; and producer price index.8 See SW for full details.

6.1 Parameter-reduction methods

All forecasting models project the step ahead variable + onto time- predictors and lags of

the variable of interest 1 The dependent variable and the predictors are transformations of

the original data: if is the observation at time , we dene + = (1200 ) log( + )

= 1200 log( 1) = 1200 log( 1) for the real variables and + =

(1200 ) log( + ) 1200 log( 1) = 1200 log( 1) =

1200 log( 1) for the price indexes. We consider the following forecasting methods.

8These variables coincide with the variables forecasted by SW, with the exception of the consumer price index

less food which replaces the consumer price index less food and energy series considered by SW (not included in the

data set available to the authors).
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6.1.1 Sequential model selection

This method considers the full set of 145 predictors, together with lags of the variable of interest and

performs a sequential search on each estimation sample that retains only a subgroup of variables

that are then used for forecasting. The initial model is

+ = + 0 + 1 + + 6 5 + + (14)

where is a vector containing the 145 predictors.9 We apply a simplied version of the algorithm

described by Hoover and Perez (1999, p.175), which reduces the number of regressors in the model

by performing a sequence of stability tests, residual autocorrelation tests, and and tests of

signicance of the regressor�’s coe cients. We consider a single reduction path and perform only a

subset of the tests used by Hoover and Perez (1999). We use a signicance level = 0 01 for all the

tests, designed to encourage parsimony of the nal model A complete description of our algorithm

is available upon request from the rst author.

6.1.2 Di usion indexes

This two-step method rst uses principal component analysis to estimate factors �ˆ from the

predictors (1 12) and then considers the model with lags

+ = + 0 �ˆ + 1 + + +1 + + (15)

where both and are selected by BIC.

6.1.3 Bayesian shrinkage estimation

This method considers the full model (14) and applies Bayesian estimation of its coe cients using

the Litterman (1986) prior. The Litterman prior, when applied to variables expressed in di erences,

shrinks all coe cients in (14) towards zero, except that for the intercept a di use prior is used.

Formally, the variance-covariance matrix for the prior distribution of ( 0 0)0 is diagonal,

with (0 108) (0 ( · ·�ˆ �ˆ )2) = 1 145 and (0 ( ))2), = 1 6. As

suggested by Litterman (1986), we set = 0 2 and = 0 2 but the results were robust to a number

of di erent choices for and 10 The Bayesian estimate of is then = ( 0 +�ˆ2 1) 1( 0 )

9We overcome multicollinearity in by replacing the groups of variables whose correlation is greater than .98

with their average. The new contains 130 regressors.
10 is the prior standard deviation of the coe cient. The prior standard deviation of subsequent lags of

is further divided by the lag length to reect higher condence in the prior mean for longer lags. is a number

between zero and one that reects the belief that is less useful for forecasting than lagged values of the dependent

variable. The prior standard deviation of is further multiplied by the ratio of the sample standard deviations of

the dependent variable and of the th regressor �ˆ �ˆ to eliminate di erences in scale.

20



where is × 152 ( is the size of the estimation sample) with rows (1 0
1 5)

is × 1 with elements + �ˆ is the estimated standard error of the residuals in a univariate

autoregression for + and is the covariance matrix implied by our prior.

6.1.4 Benchmarks

The rst benchmark is an autoregressive ( ) model

+ = + 1 + + +1 + + (16)

where is selected by BIC with 0 6. The second benchmark is based on a random walk in

levels, corresponding to the forecasting model in di erences

+ = + + (17)

6.2 Real-time forecasting experiment

We use the ve methods above to simulate real-time forecasting. The available sample has size

= 468 and we choose a maximum estimation window = 150 + For comparability, we

apply the same transformations to the original series as those documented in Appendix B of SW.

The rst estimation sample is from 1960:1 through 1972:6 + (the rst 12 data were used as

initial observations). We screen the data in this sample for outliers, replace the outliers with the

unconditional mean of the variable, standardize the regressors, estimate the di usion indexes and

select the AR lag lengths and number of di usion indexes by BIC. We run the regressions (14),

(15), (16), (17) and apply the Bayesian shrinkage method for =1960:1,...,1972:6 and use the values

of the regressors at time =1972:6 + to generate a set of forecasts for 1972:6+2 We then move

the estimation window forward one period and repeat all of the above steps on data from 1960:2

through 1972:7+ which generates the forecasts for 1972:7+2 The nal forecasts for 1998:12 are

produced at =1998:12 The out-of-sample size is = 318

In Section 2.1, we mentioned that our procedures can be used to provide direct evidence as to

the advantages or disadvantages of limited memory estimators. Specically, one can compare the

estimated loss from using a limited memory estimator (e.g., a rolling window estimator) to that of

an expanding data window procedure. We do not provide a formal test based on this comparison

here. Instead, however, we illustrate the information available for assessing the value of rolling

window procedures by comparing their performance to that of forecasts of industrial production

and consumer price index for all models and forecast horizons using an expanding window of data

from 1960:1 onwards. Table 2 reports the relative MSEs of the rolling-window and expanding-

window forecasts. [TABLE 2 HERE]

The table shows that MSEs for rolling-window forecasts are most of the time much smaller

than those for expanding-window forecasts (ratios are as small as 0.01). In the remaining cases,
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the MSEs for the two procedures are virtually identical (with one exception, ratios are no greater

than 1.07). We see that the rolling window procedure can result in substantial forecast accuracy

gains relative to an expanding window for important economic time series.

6.3 Results of predictive ability tests

For each series of forecasts we conduct pairwise tests of equal conditional predictive ability of

the ve forecasting methods, using a squared error loss11. For = 1 6 and 12 we test 0 :

[( +
�ˆ )2 ( + �ˆ )2|G ] [ + |G ] = 0 for both G = F (conditional perspective)

and G = { } (unconditional perspective).

For the case G = F we use the test function: = (1 )0 Tables 3 and 4 show the results

of conditional predictive ability tests for real variables and price indexes. The entries in the tables

are the p-values of pairwise tests of equal conditional predictive ability, using the test of Theorem

5. The numbers within parentheses below each entry are the indicators discussed in Section

4, for = 0. A plus (minus) sign indicates rejection of the null hypothesis at the 10% level and

signals that the method in the column would have been chosen more (less) often than the method

in the row, as suggested by an entry greater (less) than .5. [TABLES 3 - 4 HERE]

A sharp result in the tables is that the sequential model selection method is characterized by

the worst performance, likely due to its tendency to select over-parameterized models (cases with

40 or more predictors in the nal model were not uncommon). A second observation is that the

predictors seem less useful for forecasting price indexes than real variables. For price indexes, the

parameter-reduction methods do not generally outperform the AR benchmark. For real variables,

both Bayesian shrinkage and the di usion indexes methods mostly outperform the benchmarks.

Bayesian shrinkage, however, often outperforms the di usion indexes, thus emerging as the best

forecasting method for real variables.

The results for the unconditional case are reported in Tables 5 and 6. The main entries are the

p-values of pairwise tests of equal unconditional predictive ability of Theorem 6, and the numbers

within parentheses are the ratios of MSE for the method in the column relative to the method in

the row. A plus (minus) sign indicates that the method in the column outperforms (underperforms)

the method in the row at the 10% signicance level, as evidenced by a relative MSE less (greater)

than 1. [TABLES 5 - 6 HERE]

The tables reveal that for the real variables the di usion indexes and the Bayesian shrinkage

methods in most cases outperform both benchmarks and that Bayesian shrinkage further outper-

forms the di usion indexes method roughly half the time. For price indexes, instead, the parameter-

reduction methods cannot generally outperform the AR.

11The corresponding results for an absolute error loss function are available upon request.
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Two conclusions emerge from the comparison of the results for the conditional and the uncondi-

tional tests. First, in some of the comparisons there is evidence of superior conditional performance

even though we cannot reject equal unconditional performance (e.g., di usion indexes versus AR

forecasts of CPI). This suggests that in those cases, even though the two methods performed on

average equally well over the out-of-sample period, their relative performance could have been pre-

dicted by lagged relative performance. A second conclusion is that even though rejection of the

unconditional hypothesis should imply rejection of the conditional hypothesis, in some cases the

unconditional tests reject equal performance while the conditional tests fail to do so. This could

either be due to the unconditional test being oversized or to the conditional test having low power.

Our Monte Carlo simulations suggest that the more plausible explanation is the size distortion of

the unconditional test and its sensitivity to lag length selection for the HAC estimator.

6.4 Decision rule assessment

To assess the e ectiveness of the decision rule proposed in Section 4, we evaluate the performance of

the �“hybrid�” forecast obtained by recursively applying the decision rule to select the best forecast

for the next period. We consider the sequence of quadratic out-of-sample losses for 1-, 6-, and 12-

months-ahead forecasts of Industrial production obtained by the 5 forecasting methods, as described

in Section 6.2. For each pair of forecasting methods and for each forecast horizon, we derive the

hybrid forecast sequence by applying the two-step decision rule (using = (1 )0) on a rolling

window of size 200, except that we proceed to step 2 regardless of the test outcome. We evaluate

the performance of the hybrid forecast and contrast it to that of the forecasts in the pair by (1)

comparing the MSE of the hybrid forecast to the MSE of the individual forecasts; and (2) testing

optimality of each forecast for quadratic loss. The entries in Table 7 equal 1 if the MSE of the

switching forecast is less than or equal to both the MSEs of the individual forecasts. The table

reveals that in 26 out of 30 cases the switching forecast is at least as accurate as the individual

forecasts. [TABLE 7 HERE]

We tested forecast optimality by regressing the forecast errors on a constant and one lag of the

forecast errors. Optimality is rejected if one rejects that the coe cients are jointly zero at the 5%

level. We found that in all but two cases (sequential method vs. AR and RW at the 12-month

horizon), if at least one of the individual forecasts is optimal, the switching forecast is also optimal.

If they are both suboptimal, so is the switching forecast. To conserve space, we do not tabulate

these results here. Detailed results are available from the rst author upon request.

Overall, we observe that our simple decision rule behaves reasonably and adds useful informa-

tion, suggesting that the model selection implications of our testing approach may be a promising

direction for future research.
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7 Conclusion

We propose a general framework for out-of-sample predictive ability testing and forecast selection

that is particularly well-suited to the presence of heterogeneity in the data. Our method can be

applied to evaluation of point, interval, probability, and density forecasts for a general loss function.

We depart from the approach to predictive ability testing of Diebold and Mariano (1995) and

West (1996) by evaluating the accuracy of a particular forecasting method, rather than that of the

forecasting model. That is, we consider an environment in which estimation uncertainty in the

forecasting model�’s parameters does not vanish asymptotically, which gives our tests several advan-

tages over the previously available tests: they directly capture the e ect of estimation uncertainty

on relative forecast performance; they can handle comparison of forecasts based on both nested

and non-nested models; and they allow the forecasts to be produced by general parametric, semi-

and non-parametric estimation techniques.

Our framework can accommodate both unconditional objectives (�“which forecasting method

was more accurate on average?�”), that have been the sole focus of the literature up to this point, as

well as conditional objectives (�“can we predict which forecasting method will be more accurate at a

specic future date?�”), which can help ne-tune the forecast selection decision to current economic

conditions. We accordingly propose two tests: a test of equal conditional predictive ability and a

test of equal unconditional predictive ability, which is the Diebold and Mariano (1995) test extended

to an environment permitting parameter estimation.

Our Monte Carlo simulations suggest that our conditional tests have good nite-sample size

and power properties. For the unconditional test, we show that when comparing nested models

our test correctly recognizes that forecasts from a misspecied but parsimonious model may be as

accurate as forecasts from a correctly specied but less parsimonious model. Previously available

tests (McCracken, 1999 and Clark and McCracken, 2001) instead focus on the model rather than

the forecasting method, and thus tend to favor the less parsimonious model. The disparity between

the two approaches is greater the smaller the ratio of in-sample to out-of-sample sizes. A drawback

of the unconditional test implemented here is that it tends to falsely reject equal performance

when the loss di erences have zero mean but are highly serially correlated. This may be possible to

remedy by more careful selection of HAC covariance estimators. On the other hand, the conditional

tests emerge as useful tools for detecting persistence in the relative performance of the forecasts,

as well as cases where the relative performance may depend on the state of the economy.

We explore the model selection implications of adopting a conditional perspective by proposing

and illustrating a simple two-step decision rule for forecast selection that tests for equal performance

of the competing forecasts and then - in case of rejection - uses currently available information to

select the best forecast for the future date of interest.
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One useful application of our framework is the evaluation of di erent parameter-reduction

methods for forecasting with a large number of predictors. We consider three popular methods: a

sequential model selection approach; the �“di usion indexes�” approach of Stock and Watson (2002);

and the use of Bayesian shrinkage estimation. Using the data set of Stock and Watson (2002),

including monthly U.S. data on a large number of macroeconomic variables, we generate multi-step

forecasts of four measures of real activity and four price indexes using the di erent forecasting

methods. Previous techniques are not capable of comparing these forecasting methods. We nd

that the simplied sequential model selection method performs worst, probably due to its tendency

to select large models. A second result is that the predictors appear less useful for price indexes

than real variables. For these variables, Bayesian shrinkage is the best method.

Much work remains to be done. A signicant area for future research is the exploration of

procedures for selecting the best forecasting method or for optimally combining the methods in

case of rejection of equal conditional predictive ability. A further generalization of our tests is

to consider multiple comparisons, for example by adapting the �“reality check�” approach of White

(2000) to the conditional framework. Finally, it may be possible to obtain asymptotic renements

of the tests presented here by using bootstrap resampling techniques, for example by establishing

whether the results of Andrews (2002) can be extended to heterogeneous data.

Appendix. Proofs

Proof of Theorem 1. Under 0, { F } is an mds, and we can apply an mds central

limit theorem (CLT) to show that �ˆ 1 2 ¯ (0 ) as from which it follows

that 2 as The mds CLT we use requires conditions such that �ˆ 0,

where = [ ¯ ]. Write +1
0

+1 = ( +1 ) where (·) is a mea-

surable function. Since { } and { } are mixing by (i), and is a function of only a nite

number of leads and lags of and , it follows from Lemma 2.1 of White and Domowitz (1984)

that { +1
0

+1} is also mixing of the same size as To apply a law of large numbers

(LLN) to +1
0

+1, we further need to ensure that each of its elements has absolute + mo-

ment bounded uniformly in By the Cauchy-Schwarz inequality and (ii), | +1 +1 | +

[ | 2
+1 |

+ ]1 2[ | 2
+1 |

+ ]1 2 1 2 1 2 = 1 and for all That �ˆ 0

then follows from McLeish�’s (1975) LLN as in Corollary 3.48 of White (2001). is nite by (ii),

and it is uniformly positive denite by (iii). We apply the Cramér-Wold device and show that for

all R 0 = 1 0 1 2 ¯ (0 1) which implies that 1 2 ¯ (0 ) Con-

sider 0 1 2 ¯ = 1 2
P 1

=
0 1 2

+1 and write 0 1 2
+1 =

P
=1
�˜

+1

The variable �˜ +1 is measurable with respect to F , and the linearity of conditional expecta-
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tions implies that

[ 0 1 2
+1|F ] =

X

=1

�˜ [ +1 |F ] = 0

given (3). Hence { 0 1 2
+1 F } is anmds. The asymptotic variance is ¯2 = [ 0

1 2 ¯ ] =
0 1 2

[ ¯ ]
1 2

= 1 for all su ciently large. We have

1
1X

=

0 1 2
+1

0
+1

1 2 1 = 0 1 2 �ˆ 1 2 0 1 2 1 2 = (�ˆ ) ( ) 0

since �ˆ 0 and by Proposition 2.30 of White (2001). Further, by Minkowski�’s inequality,

| 0 1 2
+1|2+ = |

X

=1

�˜
+1 |2+ [

X

=1

�˜ ( | +1 |2+ )1 (2+ )]2+

the last inequality following from (ii). Hence, the sequence { 0 1 2
+1 F } satises the condi-

tions of Corollary 5.26 of White (2001) (CLT for mds), which implies that 0 1 2 ¯

(0 1) By the Cramér-Wold device (e.g., Proposition 5.1 of White, 2001), 1 2 ¯

(0 ) from which the desired result follows by consistency of �ˆ for .

Proof of Corollary 2. The (constant unadjusted) 2 for the regression of the constant unity

on the variables 0
+1 ( +1)

0 can be written as 2 = 0 [ 0 ] 1 0 0 where is

an × 1 vector of ones and is the × matrix with rows 0
+1 Since �ˆ = 0 , it thus

follows that 2 = ( 0 )�ˆ 1( 0 ) =

Proof of Corollary 3. The (constant unadjusted) 2 for the regression of +1 on 0

can be written as 2 = 0 [ 0 ] 1 0 0 where is the × 1 vector with elements

+1 and is the × matrix with rows 0 We thus have 2 = ¯0 (�ˆ ) 1 ¯ where

�ˆ = 0 and = 0 We will show that �ˆ 0 which implies that the two

statistics and 2 are asymptotically equivalent and thus the conditional predictive ability

test can be alternatively based on the statistic 2. By the law of iterated expectations

= 1
1X

=

[ ( +1)
2 0] = 1

1X

=

[ [( +1)
2|F ]] 0] = 2 [ 0 ]

where the last equality follows from assumption (v) Given assumptions (i) and (ii)0, the sequences

{ 0} and {( +1)
2} satisfy a LLN and it thus follows that [ 0 ] 0 and �ˆ 2 =

�ˆ [�ˆ ] 0 where the last equality is implied by (v). Hence, �ˆ = �ˆ 2 [ 0 ]

0 and the proof is complete.

Proof of Theorem 4. Given Assumption (i), it follows from Lemma 2.1 of White and

Domowitz (1984) that { +1} is mixing of the same size as since it is a function of only a

nite number of leads and lags of and Further, each element of +1 is bounded uniformly

in by (ii) McLeish�’s (1975) LLN (cf. White, 2001, Cor. 3.48) then implies ¯ [ ¯ ] 0.
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By denition, under there exists 0 such that [ ¯0 ] [ ¯ ] 2 for all su ciently

large. Then

[ ¯0 ¯ ] [ ¯0 ¯ [ ¯0 ] [ ¯ ] ] [| ¯0 ¯ [ ¯0 ] [ ¯ ]| ] 1

(18)

By arguments identical to those used in the proof of Theorem 1, { +1
0

+1} is mixing of the

same size as by (i) and each of its elements is bounded uniformly in by (ii). McLeish�’s (1975)

LLN then implies that �ˆ 0 with uniformly positive denite by (iii). The conditions

of Theorem 8.13 of White (1994) are then satised, and the theorem implies that for any constant

R [ ] 1 as

Proof of Theorem 5. (a) Under 0, we show that �˜
1 2 ¯ (0 ) as

from which (a) follows First, we apply the Cramér-Wold device and show that for all R
0 = 1 0 1 2 ¯ (0 1) where = [ ¯ ] using the fact that [ + |F ] =

0 is nite by (ii) and it is uniformly positive denite by (iii). Write 0 1 2 ¯ =
1 2
P

=
0 1 2

+ We verify that the scalar sequence { 0 1 2
+ } satises the con-

ditions of the Wooldridge and White (1988) CLT for mixing processes. By arguments identical

to those used in the proof of Theorem { 0 1 2
+ } is mixing of the same size as Fur-

ther, ¯2 = [ 0
1 2 ¯ ] = 0 1 2

[ ¯ ]
1 2

= 1 0 for all su ciently large.

Finally, by Minkowski�’s inequality,

| 0 1 2
+ |2+ = |

X

=1

�˜
+ |2+ [

X

=1

�˜ ( | + |2+ )1 (2+ )]2+

the last inequality following from (ii). Hence, the sequence { 0 1 2
+ } satises the conditions

of Corollary 3.1 of Wooldridge and White (1988), which implies that 0 1 2 ¯ (0 1)

By the Cramér-Wold device (e.g., Proposition 5.1 of White, 2001), we have that 1 2 ¯

(0 ) It remains to show that �˜ 0 which completes the proof. We have

�˜ = 1
X

=

[ +
0

+ ( +
0

+ )]+

+ 1
1X

=1

X

= +

[ +
0

+ ( +
0

+ )+ +
0

+ ( +
0

+ )]

For = 0 1 { +
0

+ } is mixing of the same size as and each of its elements is

bounded uniformly in by (ii). Applying McLeish�’s (1975) LLN (e.g., Corollary 3.48 of White, 2001)

and using the fact that 1 for it follows that 1
P

= + [ +
0

+

( +
0

+ )] 0 for each = 0 1 (with 0 1) implying �˜ 0.

(b) Using the same arguments as in (a), { + } is mixing of the same size as Further,

each element of + is bounded uniformly in by (ii) McLeish�’s (1975) LLN (as in Corollary
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3.48 of White, 2001) then implies that ¯ [ ¯ ] 0. By denition, under there exists

0 such that [ ¯0 ] [ ¯ ] 2 for all su ciently large. We then have

[ ¯0 ¯ ] [ ¯0 ¯ [ ¯0 ] [ ¯ ] ] [| ¯0 ¯ [ ¯0 ] [ ¯ ]| ] 1

(19)

By arguments identical to those used in part (a) - which for this particular result do not require

the time dependence structure imposed under the null hypothesis - it follows that �˜ 0,

with uniformly positive denite by (iii). Theorem 8.13 of White (1994) then implies that for

any constant R [ ] 1 as

Proof of Theorem 6. (a) We separately show that, under 0,
¯

(0 1) where
2 = [ ¯ ] and that �ˆ 0, from which the result follows 2 is nite by (ii) and

it is positive for all su ciently large by (iii). Write
¯

= 1 2
P

=
1

+ and

consider the scalar sequence { 1
+ } We verify that this sequence satises the conditions

of Wooldridge and White�’s (1988) CLT for mixing processes. By arguments similar to those used

in the proof of Theorem 1, { 1
+ } is mixing of the same size as Further, by (ii),

| 1
+ |2+ . Hence, the sequence { 1

+ } satises the conditions of Corollary

3.1 of Wooldridge and White (1988), which implies that
¯

(0 1) By similar arguments

as above, { + } is mixing of the same size as which implies that { + } is also mixing

with of size ( 1) or of size 2 ( 2) This, together with assumption (ii) and with the

fact that ( + ) = 0 under 0, implies that the conditions of Theorem 6.20 of White (2001)

are satised, and thus �ˆ 0, which completes the proof

(b) As shown in (a), { + } is mixing of the same size as Further, + is bounded

uniformly in by (ii) McLeish�’s (1975) LLN (as in Corollary 3.48 of White, 2001) then implies

that ¯ [ ¯ ] 0. Under there exists 0 such that ( [ ¯ ])2 2 for all

su ciently large. We then have

[ ¯2 ] [ ¯2 ( [ ¯ ])2 ] [| ¯2 ( [ ¯ ])2| ] 1 (20)

By arguments identical to those used in part (a) �ˆ2 2 0, and 2 0 for all su ciently large

by (iii). From Theorem 8.13 of White (1994), it follows that for any constant R [ ¯2 �ˆ2

2] = [ 2 2] 1 as which implies that [| | ] 1 as

Proof of Proposition 7. We have
"
1X³

+1
�ˆ( )
´2
#

=
1X

½³ h
+1

�ˆ( )
i´2

+
³

+1
�ˆ( )
´¾

= 1 2

For = 1, the bias term is
³ h

+1
�ˆ

+1

i´2
=
³

+1

³ h
�ˆ

i
1
´´2

= 2

µ
1

P
P

2 +1

¶2

and the variance term is
³

+1
�ˆ

+1

´
= 2

µ
1 +

2
+1P
2

¶
. For = 2 the bias term is
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³ h
+1

�ˆ �ˆ +1

i´2
= 0 and the variance term is

( +1
�ˆ �ˆ +1) = 2 + (�ˆ ) + 2

+1 (�ˆ ) + 2 +1 (�ˆ �ˆ )

= 2

Ã

1 +

P
2

+
2
+1 2

¯
+1

!

Letting 1P
³

+1
�ˆ(1)
´2¸

= 1P
³

+1
�ˆ(2)
´2¸

gives in (11) as a solution.

Proof of Proposition 8. Given the assumption of normality, we have
"
1X ³

+1
�ˆ( )
´#

=
1Xn h

exp
³

+1
�ˆ( )
´i h

+1
�ˆ( )
i

1
o

=
1X

½
exp

µ h
+1

�ˆ( )
i
+
1

2

³
+1

�ˆ( )
´¶ h

+1
�ˆ( )
i

1

¾

Substituting the expressions for
h

+1
�ˆ( )
i
and

³
+1

�ˆ( )
´

= 1 2 from the Proof of

Proposition 7 and letting ( ) =
h
1P

³
+1

�ˆ(1)
´i h

1P
³

+1
�ˆ(2)
´i
gives (12).
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Figure 1: Power curves for the conditional test of Theorem 1 and the unconditional test of

Theorem 6. Each curve represents the rejection frequencies over 5000 Monte Carlo replications of

the null hypothesis: 0 : [ +1|F ] = 0 and 0 : [ +1] = 0. The DGP in the

left panel is such that [ +1|F ] = and the horizontal axis plots di erent values of The

DGP in the right panel is such that [ +1] = 0 but [ +1|F ] = ( ); is plotted

on the horizontal axis
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Figure 2: Power curves for the conditional test of Theorem 1 and the unconditional test of

Theorem 6. Each curve represents the rejection frequencies over 5000 Monte Carlo replications of

the null hypothesis: 0 : [ +1|F ] = 0 and 0 : [ +1] = 0. The DGP is such

that [ +1] = 0 but [ +1|F ] = ( ) where =1 with probability and 0 with

probability 1 . The horizontal axis plots di erent values of .
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Table 1. Rejection frequencies of unconditional predictive ability and McCracken (1999) tests

A. Quadratic loss

Unconditional predictive ability McCracken (1999)

25 50 75 100 125 150 25 50 75 100 125 150

25 .053 .041 .037 .032 .035 .024 25 .087 .284 .360 .428 .481 .525

50 .062 .052 .044 .039 .037 .035 50 .158 .068 .245 .279 .300 .356

75 .062 .053 .048 .050 .040 .037 75 .147 .168 .070 .218 .256 .279

100 .062 .054 .050 .055 .047 .043 100 .118 .152 .152 .062 .216 .241

125 .073 .056 .054 .049 .044 .042 125 .120 .137 .146 .167 .063 .199

150 .061 .055 .056 .049 .048 .046 150 .091 .141 .134 .157 .204 .058

B. Linex loss

Unconditional predictive ability

25 50 75 100 125 150

25 .060 .057 .055 .050 .046 .046

50 .066 .064 .062 .057 .061 .062

75 .069 .067 .065 .066 .064 .058

100 .070 .067 .066 .065 .068 .074

125 .072 .071 .070 .075 .075 .077

150 .075 .077 .075 .076 .077 .073

Rejection frequencies over 5000 Monte Carlo replications of the test of Theorem 6 and of McCracken�’s

(1999) test in the Monte Carlo experiment described in section 5.1, for nominal size .05. The DGP is

such that
h
1P ( +1

�ˆ(1) )
i
=

h
1P ( +1

�ˆ(2) )
i
, where �ˆ

(1)
and �ˆ

(2)
are dened in (10)

and is either quadratic or linex. is the estimation window size and is the out-of-sample size.

Table 2. Relative MSE. Rolling and expanding window

Industrial production Consumer price index

Seq. Di Ind Bayes AR RW Seq. Di Ind Bayes AR RW

1 month 3.38 0.79 0.75 1.02 0.84 0.15 1.02 0.96 1.04 1.00

6 months 0.02 0.85 0.53 1.01 0.41 0.02 1.04 0.15 1.03 1.00

12 months 0.03 0.66 0.12 1.07 0.26 0.01 1.00 0.11 1.04 1.01

Ratios of MSEs of stepts ahead forecasts obtained by the forecasting methods in the column estimated

over either a rolling window of size = 150 or an expanding window with the same initial size.
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Table 7. Decision rule assessment. Performance of the �“hybrid�” forecast of Industrial production.

Horizon = 1 month Horizon = 6 months Horizon = 12 months

Bench Seq. Di Ind Bayes AR Seq. Di Ind Bayes AR Seq. Di Ind Bayes AR

Di Ind 1 0 1

Bayes 1 1 1 1 1 1

AR 1 1 0 1 1 1 1 1 1

RW 1 1 0 1 0 1 1 1 1 1 1 1

The hybrid forecast is obtained by recursively applying the pairwise decision rule described in Section 4

(using a rolling window of size 200) to select between the method in the row and the method in the column.

Entries equal 1 if the MSE of the hybrid forecast is less than or equal to the MSEs of both the method in

the row and the method in the column and they equal 0 otherwise.
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