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Abstract

We propose a framework for out-of-sample predictive ability testing and forecast selection
that is particularly well-suited to the presence of heterogeneity in the data, a plausible feature of
many economic time series. Relative to the existing literature (Diebold and Mariano, 1995 and
West, 1996), we introduce two main innovations: (1) we derive our tests in an environment where
the finite sample properties of the estimators on which the forecasts may depend are preserved
asymptotically; (2) we accommodate conditional evaluation objectives (“can we predict which
forecast will be more accurate at a future date?”), which nest unconditional objectives (“which
forecast was more accurate on average?”), that have been the sole focus of previous literature.
As a result of (1), our tests have several advantages: they capture the effect of estimation
uncertainty on relative forecast performance; they can handle forecasts based on both nested and
non-nested models; they allow the forecasts to be produced by general estimation methods, and
they are easy to compute. While both unconditional and conditional approaches are informative,
conditioning can help fine-tune the forecast selection to current economic conditions. To this end,
we propose a two-step decision rule that uses current information to select the best forecast for
the future date of interest. We illustrate the usefulness of our approach by comparing the forecast
performance of three leading parameter-reduction methods for macroeconomic forecasting using
a large number of predictors: a sequential model selection approach, the “diffusion indexes”

approach of Stock and Watson (2002), and the use of Bayesian shrinkage estimators.
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1 Introduction

Forecasting is central to economic decision-making. Government institutions and regulatory au-
thorities often base policy decisions on forecasts of major economic variables, and firms rely on
forecasting for inventory management and production planning decisions. A problem economic
forecasters often face is how to evaluate the relative merit of two or more forecast alternatives.
One answer to this problem is to develop out-of-sample tests for comparing the predictive ability
of competing forecasts, given a general loss function. This literature was initiated by Diebold and
Mariano (1995) and further formalized by West (1996), West and McCracken (1998), McCracken
(2000), Clark and McCracken (2001), Corradi, Swanson and Olivetti (2001) and Chao, Corradi and
Swanson (2001), among others. This work represents a generalization of previous evaluation tech-
niques which restricted attention to a particular loss function (e.g., Granger and Newbold, 1977,
Leitch and Tanner, 1991, West, Edison and Cho, 1993, Harvey, Leybourne and Newbold, 1997).

In this paper, we develop a framework for out-of-sample predictive ability testing and forecast
selection that can be applied to multi-step point, interval, probability, or density forecast evaluation
for a general loss function. Our tests are a complement to the existing approach to predictive
ability testing (which in the remainder of the paper we consider to be represented by Diebold and
Mariano, 1995 and West, 1996, henceforth DMW), and at the same time they can be viewed as
a generalization of the DMW tests since they are applicable in all cases in which those tests are
applicable and in many more besides.

We introduce two main methodological innovations: (1) in deriving our tests, we consider
an environment where the finite sample properties of the estimators on which the forecasts may
depend are preserved asymptotically and (2) we formulate the problem of forecast evaluation as a
problem of inference about conditional expectations of forecasts and forecast errors, which nests
the unconditional expectations that are the sole focus of the existing literature. We accordingly
propose two tests: a general test of equal conditional predictive ability of two competing forecasts
and, as a special case, a test of equal unconditional predictive ability. Although the latter coincides
with the test proposed by Diebold and Mariano (1995), we provide primitive conditions that ensure
its validity and extend it to an environment permitting parameter estimation.

Regardless of whether we take a conditional or an unconditional perspective, preserving the finite
sample behavior of the estimators in our evaluation procedure gives our tests several advantages
over existing tests. First, they directly reflect the effect of estimation uncertainty on relative
forecast performance, whereas the DMW tests do not, for example, take into account differing
model complexities, unless explicitly incorporated into the loss function (e.g., AIC, BIC)!. As a

result, our object of evaluation is not simply the forecasting model as in the DMW approach, but

' A recent paper by Clark and West (2004) suggests an alternative way to overcome this problem in the context

of testing the martingale difference hypothesis.



what we call the forecasting method. This includes the forecasting model along with a number
of choices that must be made by the forecaster at the time of the prediction and that can affect
future forecast performance, such as which estimation procedure to choose and what data to use
for estimation. A second advantage is that our framework permits a unified treatment of nested
and non-nested models, whereas the tests of West (1996) are not applicable to nested models. The
comparison between nested models is important because it is often of interest to test if forecasts from
a given model can outperform those from a nested benchmark model. Third, we can accommodate
general estimation procedures in the derivation of the forecasts, including Bayesian and semi- and
non-parametric estimation methods that are excluded from the DMW framework. A final, practical
advantage of our tests is that they are easily computed using standard regression software, whereas
the existing tests can be difficult to compute or have limiting distributions that are context-specific
(e.g., the nested test of Clark and McCracken, 2001).

Concerning our second innovation, we emphasize that we are not recommending the conditional
over the unconditional approach. Rather we provide a framework in which both make sense, and it
is up to the researcher to decide which is more appropriate given her objectives. The unconditional
approach asks which forecast was more accurate, on average, in the past; it may thus be appropriate
for making recommendations about which forecast may be better for an unspecified future date.
The conditional approach, instead, asks whether we can use current information - above and beyond
past average behavior - to predict which forecast will be more accurate for a specific future date.

A further contribution is that our tests are derived under the assumption of data heterogeneity,
which is plausibly more realistic than the assumption of stationarity typically made in the litera-
ture. In particular, we allow the data to be characterized by structural shifts at unknown dates.
The assumption of heterogeneity has important consequences for which forecasting methods should
be considered. In heterogeneous environments, the use of an expanding estimation window is not
appropriate, as observations from the distant past at some point lose their predictive relevance. For
this reason, we consider a “rolling window” forecasting scheme as a convenient way to handle insta-
bility in the data, and base the forecasts on a (possibly time-varying) moving window of the data
that discards old observations. The choice of the estimation window can be data-driven and there-
fore part of the forecasting method, as in the procedure suggested by Pesaran and Timmermann
(2002). Although our main focus is on the rolling window scheme, our results are also valid for
a “fixed estimation sample” forecasting scheme, which involves estimating the models’ parameters
only once over the in-sample data and using these to produce all out-of-sample forecasts.

A final, important implication of our approach is that it provides a basis for making forecast
selection decisions in cases where equal (conditional) predictive ability is rejected. As an example,
we propose a simple decision rule for forecast selection based on the idea that, since rejection means

that the relative performance of the competing forecasts is predictable, we should exploit current



information for predicting which forecast will be more accurate in the future.

To illustrate the usefulness of our approach, we consider, from both the conditional and the
unconditional perspectives, the problem of macroeconomic forecasting using a large number of
predictors and compare multi-step forecasts of eight macroeconomic variables (four measures of
real activity and four price indexes) obtained by leading methods for parameter reduction: a
simplified version of the general-to-specific model selection approach of Hoover and Perez (1999),
the “diffusion indexes” approach of Stock and Watson (2002) and the use of Bayesian shrinkage
estimators (Litterman, 1986). These forecasts cannot be compared using any previous method.
We conclude that for the price indexes these methods are no better than a simple autoregression
whereas for the real variables Bayesian shrinkage is the best performing method. The simplified

general-to-specific method is characterized by an overall poor performance.

2 A new approach to out-of-sample predictive ability testing

In this section, we set forth our approach and discuss the main differences between our approach

and previous approaches to out-of-sample predictive ability testing.

2.1 Null hypothesis and asymptotic framework

Suppose one wants to compare the accuracy of competing forecasts f;(3;) and g¢(55) for the 7—steps

ahead variable Y, ., using a loss function Ly, (-). The DMW approach tests:

Ho : E[Li1r(Yiar, f1(81)) = Ligr (Yegr, 9:(83))] = 0, (1)

where 5] and 35 are population values (i.e., probability limits of the parameter estimates). This
makes (1) a statement about the forecasting models: Hy says that the models are equally accurate
on average. A key feature of West’s (1996) test of Hp is the recognition and accommodation of
the fact that, although Hy concerns population values, the actual forecasts appearing in the test
statistic depend on estimated parameters.

Our central idea is to test a null hypothesis that differs from the DMW null in two respects:
(1) the losses depend on estimates 3; and B, rather than on their probability limits; and (2) the

expectation is conditional on some information set G; :

Ho : ElLier (Yerrs fi(B1y) = Lior (Yirrs e (Bay))IGe] = 0. (2)

The focus on parameter estimates makes (2) a statement about the forecasting methods, which
include the models as well as the estimation procedures and the possible choices of estimation
window. Our null says that one cannot predict which forecasting method will be more accurate at

the forecast target date ¢ + 7 using the information in G;.
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Regardless of the choice of G;, expressing the null in terms of parameter estimates is useful be-
cause it allows us to capture the impact of estimation uncertainty on relative forecast performance.
For example, by comparing expected estimated Mean Squared forecast Errors (MSE), rather than
their population counterparts, we accommodate the possibility of a bias-variance tradeoff such that
forecasts from a small, misspecified model (biased with low variance) are as accurate as forecasts
from a large, correctly specified model (unbiased with high variance). Because of its focus on the
forecasting model rather than the forecasting method, the DMW approach cannot accommodate
such a tradeoff. This emphasizes the distinction between evaluation of a forecasting method, which
is a practical matter, and evaluation of a forecasting model, which may be appropriate for obtaining
economic insight, but is less informative for prediction purposes.

An implication of testing different null hypotheses is that the tests of (1) and (2) are analyzed
in different out-of-sample asymptotic environments. Whereas the test of West (1996) is analyzed
in an environment where parameter estimates converge to their population values, we operate in
an environment with asymptotically non-vanishing estimation uncertainty. This ensures that our
tests capture the impact of estimation uncertainty on forecast performance. Further, as we discuss
in detail in Section 3.2, this has the important advantage that our tests can handle nested and
non-nested models in a unified framework.

We achieve non-vanishing estimator uncertainty by considering estimators with limited memory,
in particular, “rolling window” estimators, a method popular among practitioners ever since its
influential use by Fama and MacBeth (1973) and Gonedes (1973). Limited memory estimators are
especially appropriate in the heterogeneous data environments considered here, as they discount
or exclude older data that may no longer be informative about the predictive relations of current
interest. Other relevant limited memory estimators are recursive estimators of the exponential
smoothing type or, as suggested by a referee, expanding window weighted least squares estimators
with weights that more heavily discount less recent observations. We work explicitly with rolling
window estimators not only because of their popularity among practitioners, but also for two
further reasons: first, this approach affords significant generality, as it imposes no restrictions on
the estimators other than finite memory, whereas the alternatives are comparatively specific; and
second, the analysis required for this approach is straightforward, whereas that for the alternatives
is more involved, but without a compensating increase in insight.

In stationary environments, limited memory estimators have the disadvantage of inefficiency.
It is, however, an empirical question as to whether a given data-generating process is stationary
or heterogeneous. Evidence provided by Clements and Hendry (1998, 1999) strongly suggests that
heterogeneity is often present in economic time series. Interestingly, our procedures can offer direct
evidence as to the advantages or disadvantages of limited memory estimators, thus permitting the

user to avoid their inappropriate application. We provide further discussion below.



Regarding the choice of the conditioning set G;, a leading case of interest is G;= F¢, the time-t
information set. Another possibility is Gi={f), Q}, the trivial o—field, which yields a test of equal
unconditional predictive ability. The choice of the relevant conditioning set will depend on the
objectives of the evaluator. Letting G,={0, 2} seems appropriate if the goal is to provide a forecast
for an unspecified date in the future, in which case it makes sense to base recommendations on
which forecast may be better on average. If on the other hand the goal is to produce a forecast for
a specific date 7 periods in the future, choosing G;= F; may be more appropriate, since it allows us
to ask whether there is additional current information that can help predict which forecast will be
more accurate for that date. Conditioning (i.e., letting G;#{0, }) when testing relative forecast
performance is important, as it is plausible to expect some predictability in future loss differences.
For example, one may expect the relative performance to be characterized by persistence, so that
if a forecast outperforms its competitor today it may be likely to do so tomorrow. In this case,
past loss differences may predict future loss differences. We may also expect the performance of
certain models to depend the state of the economy, so that a business cycle indicator may tell us
which forecast is preferable for a future date, given current economic conditions.

Even though our framework nests both conditional and unconditional objectives, for succinct-

ness we refer to a test of (2) as a test of equal conditional predictive ability.

2.2 Data assumptions

One of the conclusions of Clements and Hendry (1998, 1999) is that the main explanation for sys-
tematic forecast failure in economics is a non-constant data-generating process for the variables to
be forecast. In this paper, we therefore work with the assumption that the data generating process
is heterogeneous, which, in our view, is a more realistic and practical assumption for economic
forecasting contexts than the assumption of stationarity typically made in the predictive ability

2 Specific sources of heterogeneity in the series that economists forecast are several.

literature.
First, even if the underlying economic processes were stationary, heterogeneity in the observed
time series can arise from changes in the measurement process. This source of heterogeneity is one
that macroeconomic variables are particularly sensitive to (among other things, the definition of
the measured variables and which entities are measured in constructing the variables may change).
These sources of heterogeneity are plausibly less a concern for non-aggregated time series, such as
the prices of well-defined commodities, as in financial economics. Nevertheless, the underlying eco-
nomic processes include a variety of forces that affect either the nature of the commodity itself (the
laws governing the behavior of firms represented by equity assets change, as do market conditions

and technologies used by such firms), or the way the commodity is traded. Taken together, these

2The type of non-stationarity we consider here is that induced by distributions that change over time. We also

assume short memory, thus ruling out non-stationarity due to the presence of unit roots.



factors make it plausible that the relations between variables of interest relevant for forecasting
could be different now than they were last year, let alone five, ten, or twenty years ago, and are
not plausibly identical, as stationarity would require.

If heterogeneity is present in an economic time series, suitable methods for model-based forecast-
ing and forecast evaluation need to be applied. In general, it seems appropriate in a time-varying
environment to construct forecasts using estimators with limited memory, rather than using all
available data. An example is the popular practice of specifying and estimating forecasting mod-
els over a rolling window of the data, which is the approach that we adopt here. A consequence
of this is that the estimation window must be treated as a choice variable to be evaluated along
with the forecasting model and the estimation procedure as parts of the forecasting method under
analysis. In contrast, in the DMW framework the sample split between estimation (in-sample) and

evaluation (out-of-sample) portions is arbitrary.

3 Theory

3.1 Description of the environment

Consider a stochastic process W = {W; : Q@ — Rt s € Nt = 1,2,...} defined on a complete
probability space (€2, F, P). We partition the observed vector W; as W; = (Y3, X])’, where Y; : Q —
R is the variable of interest and X; : €2 — R?® is a vector of predictor variables, and we define
Fi=oc(Wi,....,W{, X[ ) (as in, e.g., White, 1994, pg. 96). We adopt the standard convention of
denoting random variables by upper case letters and realizations by lower case letters.

We focus for simplicity on univariate forecasts. Suppose two alternative models are used to
forecast the variable of interest 7 steps ahead, Y;4.. The (point, interval, probability, or density)
forecasts formulated at time t are based on the information set F; and are denoted by fm,t =
fwe, w1, ey Wiy 1 Bmt) and Gmt = g(we, We—1, .o, We—m1; Bm7t), where f and g are measurable
functions. The subscripts indicate that the time-t forecasts are measurable functions of a sample
of size m, consisting of the m most recent observations.

If the forecasts are based on parametric models, the parameter estimates from the two models
are collected in the k x 1 vector Bmi. Otherwise, Bm’t represents whatever semi-parametric or
non-parametric estimators are used in constructing the forecasts. Note that we allow for general
estimation procedures. The only requirement is that the estimation window size must be finite.

We view m as either a method-specific constant or a possibly time-dependent random integer
determined by the forecasting method. For technical convenience, we require that m < m, a finite
constant (this can be relaxed, but at the cost of an explosion of technicality). For example, a
data-driven choice of m is given by the procedure suggested by Pesaran and Timmermann (2002).

The requirement that m be finite rules out an expanding window forecasting scheme. In principle,



however, our framework can also handle expanding estimation window procedures with observations
weights that suitably discount older observations, such as recursive estimators of the exponential
smoothing type, with smoothing parameter bounded away from zero. We take this up elsewhere.

We perform the out-of-sample evaluation using a “rolling” window estimation scheme. Let T
be the total sample size and m; the size of the first estimation window. We formulate the first
T—step ahead forecasts at time my, using data indexed 1, ..., m; and compare these forecasts to the
realization y,, 1.5 At time m + 1, we formulate the second set of forecasts using the previous mg
observations, where mo can be different from m;. We compare the second set of forecasts to the
realization yy,,+14-. We thus iterate the procedure and obtain the last forecasts at time 7" — 7, by
utilizing the mp_;_,,,+1 most recent observations and compare the forecasts to y7. This yields a
sequence of n =T — 7 — my + 1 out-of-sample forecasts and relative forecast errors. Even though
the estimation window lengths m; can vary over time, for simplicity we express each forecast as a
function of m (m < m), which can be thought of as the maximum of all m;’s.

Note that the requirement that m be finite is also compatible with a fixed estimation sample
forecasting scheme, where the parameters are estimated only once on the first m; observations
and used to produce all n out-of-sample forecasts. In this case Bt,m = Bml’ml, mp <t < T —1.
For clarity of exposition, in the remainder of the paper we restrict attention to a rolling window
forecasting scheme, but all results are valid for a fixed estimation sample scheme.

The elements above - the model, the estimation procedure and the size of the estimation window
- are dimensions of choice by the user and are part of the forecasting method under evaluation.

We evaluate the sequence of out-of-sample forecasts by a loss function Ly, (Yiir, fmt), that
depends on the forecasts and on the realizations of the variable. This loss function is either an
economically meaningful criterion such as utility or profits (e.g., Leitch and Tanner, 1991, West,
Edison, and Cho, 1993) or a statistical measure of accuracy. The following are some examples of
statistical loss functions that have been considered in the forecast evaluation literature. Examples
of appropriate loss functions for the evaluation of quantile, probability, and density forecasts are
also discussed in Diebold and Lopez (1996), Giacomini and Komunjer (in press) and Giacomini
(2002). For simplicity, let f; = fys and 7 = 1.

1. Squared error loss function: Lyi1(Yii1, fi) = (Yir1 — f1)%
2. Absolute error loss function: Lii1(Yit1, fi) = |Yie1 — fil-

3. Asymmetric linear cost function of order « (also known as the lin-lin or “tick function”):
Lit1(Yit1, fi) = (@ = 1(Ye1 — ft < 0))(Yeg1 — fr), for a € (0,1).

4. Linex loss function: L1 (Yiq1, ft) = exp(a(Yeg1 — fr) —a(Yer1 — fr) — 1, a € R.

31f the two forecasts are based on estimation windows of different lengths, we let m1 be the maximum of the two.



5. Direction-of-change loss function: Lit1(Yit1, fi) = {sign(Yis1 — Y2) # sign(fr — Yi) }.
6. Predictive log-likelihood: Liy1(Yii1, fi) = log fi(Yi+1), with f; the density forecast of Yi4q.

For a given loss function and o—field G;, we write the null hypothesis of equal conditional

predictive ability of forecasts f and g for the target date t + 7 as

Ho : E[Ltrr(Yerr, fint) — Livr Yisrs Gmt) |Gr] (3)
= FE[ALp+-|Gt] = 0 almost surely t = 1,2, ...

In writing (3), we are adopting the convention that fm,t and g, are measurable-F;. Note that we
do not require G; = F;, although this is a leading case of interest that we analyze in the next two

sections. We separately address the case Gi={0, 2} in a subsequent section.

3.2 Onme-step conditional predictive ability test

When 7 = 1 and G; = F;, the null hypothesis (3) claims that the out-of-sample sequence {AL,, ;, F; }
is a martingale difference sequence (mds). In this case, the conditional moment restriction (3) is
equivalent to stating that E[ﬁtALth] = 0, for all /;— measurable functions ht. We restrict
attention to a given subset of such functions, which we collectively denote by the ¢ x 1 F—
measurable vector h; and follow Stinchcombe and White (1998) by referring to this as the “test
function”. For a given choice of test function h;, we construct a test exploiting the consequence of
the mds property that Hop, : E[hALp, 4+1] = 0.

Standard asymptotic normality arguments suggest using a Wald-type test statistic of the form

T-1 T-1
T =™ ALy 1) (07 AL gga) =02, Q0 Zinn (4)
t=m t=m

where Zy,, =n? Zf;i Zmi+1s Zmpt1 = MALp 11 and Q,=n"! Z?:;rlz mt+1Zmi+1 Isagxgq
matrix consistently estimating the variance of Z,, +11.

A level « test can be conducted by rejecting the null hypothesis of equal conditional predictive
ability whenever Tfﬁ’n > X?Ll_a, where ijl_a is the (1 — a)—quantile of a Xz distribution. The
asymptotic justification for the test is provided in the following theorem, which characterizes the

behavior of the test statistic (4) under the null hypothesis.

Theorem 1 (One-step conditional predictive ability test) For forecast horizon T =1, (maz-
imum) estimation window size m < m < 0o and q X 1 test function sequence {h;} suppose:

(i) {Ws}, {h+} are mizing with ¢ of size —r/(2r — 1), r>1oraof size —r/(r—1),r>1;

(i1) E\thHiP(’”*‘s) < A < oo for some §d >0,i=1,...,q and for all t;

(iii) U =n SR mt+1Zm t+1] 18 uniformly positive definite.

Then, under Hy in (3), T, m’n <, Xq as n — oo.
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Comments: 1. Assumption (i) is mild, allowing the data to be characterized by considerable
heterogeneity as well as dependence. This is in contrast with the existing literature, which typically
assumes stationarity of the loss differences. In particular, we allow the data to be characterized by
arbitrary structural changes at unknown dates.

2. The asymptotic distribution is obtained for the number of out-of-sample observations n going
to infinity, whereas the maximum estimation sample size m is finite. This leads to asymptotically
non-vanishing estimation uncertainty. In contrast, in the framework of West (1996), both the in-
sample and the out-of-sample sizes grow, causing estimation uncertainty to vanish asymptotically.
As a result, in the DMW framework the choice of how to split the sample into in-sample and
out-of-sample portions is arbitrary, whereas here the choice of estimation window is part of the
forecasting method under evaluation.

3. The use of an expanding window forecasting scheme is ruled out by our assumption of
finite estimation window. This assumption is motivated by our explicit allowance for heterogeneity
in the data, and it further serves the purpose of creating an environment with asymptotically
non-vanishing estimation uncertainty. Such an environment could also be obtained by assuming an
expanding window whose size grows more slowly than the out-of-sample size or - as we mentioned in
Section 3.1 - by considering an expanding window associated with exponential smoothing recursive
estimators with smoothing parameter bounded away from zero.

4. Assumption (iii), imposing positive definiteness of the asymptotic variance of the test sta-
tistic, is related to a similar requirement made in the existing predictive ability testing literature
(e.g., West, 1996, McCracken, 2000), but it differs in a fundamental way. In that literature, the
asymptotic variance of the test statistic is computed at the probability limits of the parameters,
which may cause singularity when the forecasts are based on nested models. In contrast, in our
framework the presence of non-vanishing estimation uncertainty prevents such singularity and thus
makes our tests applicable to both nested and non-nested models.

5. In the construction of the test statistic we exploit the simplifying feature that the null
hypothesis imposes the time dependence structure of an mds, which implies that the asymptotic
variance can be consistently estimated by the sample variance. As suggested by a referee, one could
instead use a heteroskedasticity and autocorrelation consistent (HAC) estimator (e.g., Andrews,
1991) in the construction of the test. This leaves the asymptotic distribution of the test statistic
under the null hypothesis unchanged and results in a test with correct size. We prefer to exploit the
mds structure, however, as this not only yields a simpler test, but it may also increase power. The
reason for this is that the asymptotic power depends on the asymptotic variance, and the smaller
is the variance the more powerful is the test. If, as is often plausible under the alternative, there is
positive autocorrelation in the loss differences that the HAC estimator accounts for, then the HAC

estimator will be larger and the asymptotic power correspondingly lower.
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6. As pointed out by a referee, the same theory outlined in Theorem 1 can be applied to testing
for conditional bias, efficiency, and encompassing, provided the assumptions of the theorem are
satisfied. One simply replaces ALy, ;+1 by a suitable function of Y;11 and the forecasts. Conditional
encompassing for quantile forecasting, in particular, is explored by Giacomini and Komunjer (in
press).

The following results provide computationally convenient ways to perform the one-step condi-

tional predictive ability test using standard regression packages.

Corollary 2 Under the assumptions of Theorem 1, the test statistic T,,%n can be alternatively
computed as nR?, where R? is the uncentered squared multiple correlation coefficient for the artificial
regression of the constant unity on the 1 x q vector (AL, 141)" fort =m, .., T —1. A level a test
can be conducted by rejecting the null hypothesis Hg of equal conditional predictive ability whenever

nR? > Xg,lfa, where Xﬁ,lfa is the (1 — a)—quantile of a Xg distribution.

Corollary 3 Let assumptions (i), (iii) and (iv) of Theorem 1 hold and further assume

(i) E|ALm7t+1]2(T+51) < A1 < o0 and E|hm~]2(r+52) < Ay < 0 for some 61, 62 > 0,1 =1,...,q
and for all t;

(v) E[(ALmt+1)?|F] = o2 for all t and some o2 > 0.

Then the one-step conditional predictive ability test can be alternatively based on the test statistic
nR?, where R? is the uncentered squared multiple correlation coefficient for the artificial regression
0f ALy, 111 on the 1 x q vector hy, fort =m,...,T —1. A level a test can be conducted by rejecting
the null hypothesis Hy of equal conditional predictive ability whenever nR? > Xal—a? where Xal—a

is the (1 — a)—quantile of a x; distribution.

If the conditional homoskedasticity assumption (v) can be reasonably expected to hold, the
true distribution of the nR? statistic in Corollary 3 may be better approximated by its asymptotic

distribution than the statistic of Corollary 2, and might thus deliver better inference.

3.2.1 Alternative hypothesis

We now analyze the behavior of the test statistic Tf,g’n under a form of global alternative to Hy.
Because we do not impose the requirement of identical distribution, we must exercise care in

specifying the global alternative in this context. In fact, our test is consistent against

Hap: E[Z

o]
m,n

EZyn) > 6 > 0 for all n sufficiently large. (5)
The following theorem characterizes the behavior of T,I}m under the global alternative H 4 p,.

Theorem 4 Given Assumptions (i), (ii) and (iii) of Theorem 1, under H 4 p, in (5) for any constant
c€eR, P[ij%n>c]—>1 as n — oo.
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Note that Hy and H 4, are not necessarily exhaustive. For a given choice of {h;}, it may in fact
happen that E[Zy/n,n/]E[Zm,n’] = 0 for some sequence {n’}, without {ALy,++1} being an mds and
thus the test may have no power against alternatives for which AL,, {1 is correlated with some
element of F; that is not contained in h;. The flexibility in the choice of test function is both a
shortcoming and an advantage of our testing framework. On the one hand, for a given h; the test
may have no power against possibly important alternatives. On the other hand, one is left free to
choose which test function is more relevant in any situation and thus focus power in that direction.

In practice, the test function is chosen by the researcher to embed elements of the information
set JF; that are thought to help distinguish between the forecast performance of the two methods.
Examples are, e.g., indicators of past relative performance (lagged loss differences or moving av-
erages of past loss differences) or business cycle indicators that may capture possible asymmetries
in relative performance during booms and recessions. When choosing the number of elements for
h:, one should keep in mind that the properties of the test will be altered if one either includes too
few or too many elements. If h; leaves out elements of the information set F; that are correlated
with ALy, ¢+1, the test may incorrectly “accept” a false null hypothesis. On the other hand, the
inclusion of a number of elements that are either uncorrelated or weakly correlated with ALy, ;11
will in some sense dilute the significance of the important elements and thus erode the power of
the test. A possible way to confront this difficulty is to apply the approaches advocated by Bierens
(1990) or Stinchcombe and White (1998), which deliver consistent tests.

3.3 Multi-step conditional predictive ability test

For a forecast horizon 7 > 1 and with G, = F;, the null hypothesis (3) implies that for all
Fi—measurable test functions h; the sequence {htALp,11,} is “finitely correlated”, so that

cov(htALp tyr,ht—jALi1r_;) = 0 for all j > 7. Similarly to the previous section, we exploit
this simplifying feature in the construction of the test statistic. Using reasoning that mirrors the

development of the test for the one-step horizon, we consider the test statistic

T—T T—T1
T =10 WALy )0 (0 WAL ir) = 02, 0 Zinn (6)
t=m t=m

where h; is a ¢ x 1 F;— measurable test function; Z,, , = n~t ZtT_TZ Ittt Zmptr = WALyt 41
and Q= n VYT Zoiir Zi gy + ”_123 L Wng Yo i Zmpr L i+ Zmtr—i L g
with wy, j a weight function such that w,; — 1 as n — oo for each j =1,...,7 —1 (e.g., Newey and
West, 1987 and Andrews, 1991).

A level « test rejects the null hypothesis of equal conditional predictive ability whenever ijl nor

Xal_a, where Xg,l—oz is the (1 — a)—quantile of a xﬁ distribution. The following result is the

equivalent of Theorems 1 and 4 for the multi-step forecast horizon case.
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Theorem 5 (Multi-step conditional predictive ability test) For given forecast horizon T >
1, (mazimum) estimation window size m < m < oo and a g x 1 test function sequence {h;} suppose:

(i) {Wi}, {hi} are mizing with ¢ of size —r/(2r —2), r > 2 or « of size —r/(r —2), r > 2;

(i1) E| mH”]”‘S <A < oo for somed >0,i=1,...,q and for all t;

T _

(i) Q=01 35, 2 B Zi 41 Z, trrltn ! Z Zt m—l—j( (Zm 47 2y, tT—j [+ E[Zmptr—i Zm t4+])
18 uniformly positive definite.

Then, (a) under Hy in (3), T, 4, Xz asn — oo and (b) under Hay, in (5), for any constant
ceR, P[T,?””>c]—>1 as n — oo.

3.4 Multi-step unconditional predictive ability test

When G, is the trivial o—field G,={0,Q} and for forecast horizon 7 > 1, the null hypothesis (3)
can be viewed as a test of equal unconditional predictive ability of forecasting methods f and g,

E[ALy,1+-] =0,t=1,2,..., against the alternative
Hy - }E[Af/mn]} > § > 0 for all n sufficiently large, (7)

where Al_}mm =n! ZtT;nZ ALy, t+-. The test is based on the statistic

ALy
tmn‘r:A—ya 8
3Ty O_n/\/ﬁ ()

where &2 is a suitable HAC estimator of the asymptotic variance 02 = var[\/nA Ly, ), for example
62 =n! ZT TAL?, T [ -1 Zp"l W, j Zt —mtj ALm 47 ALp tr—j |, with {p,} a sequence
of integers such that p, — oo as n — o0, p, = o(n) and {wp; : n = 1,2,..;5 = 1,...,pp} a
triangular array such that |wy, ;| < oo, n =1,2,...,5 = 1,...,p, and w,; — 1 as n — oo for each
j=1,....,pp (cf. Andrews, 1991).

A level « test rejects the null hypothesis of equal unconditional predictive ability whenever

/2, Where z, /5 is the (1 — a/2)—quantile of a standard normal distribution. The test
statistic ¢, n » coincides with that proposed by Diebold and Mariano (1995). The following theorem
can thus be viewed as providing primitive conditions that not only ensure the validity of Diebold

and Mariano’s (1995) test, but extend its validity to a framework permitting parameter estimation.

Theorem 6 (Unconditional predictive ability test) For given forecast horizon 7 > 1 and
(mazimum) estimation window size m < m < 00 suppose:

(i) {Wi} is a mizing with ¢ of size —r/(2r —2), r > 2 or « of size —r/(r —2), r > 2;

(i) E|ALpm - > < A < 0o for all t;

(iii) 02 = var[\/nALmn] > 0 for all n sufficiently large.

Then, (a) under Hy in (3), tmnr < N(0,1) as n — oo and (b), under Hy in (7), for any

constant ¢ € R, P||tymnr| > ¢ — 1 as n — oo.
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Note that, whereas for the conditional test the truncation lag for the HAC estimator is p,, = 7—1,
for the unconditional test we require p, — oo as n — oo; thus in practice this must be selected
by the user. The reason is that the unconditional null hypothesis, unlike the conditional null
hypothesis, does not impose any particular dependence structure on the loss differences. Since the
loss differences are mixing variables, an HAC estimator with p, — oo is needed for consistency.
Nevertheless, in practical applications it is often the case that short truncation lags improve the
finite-sample properties of the Diebold and Mariano (1995) test (see e.g., Clark, 1999).# Our

simulations in Section 5 provide additional evidence on this point.

4 A decision rule for forecast selection

An appealing practical consequence of adopting a conditional perspective when comparing the
performance of competing forecasts is that it can provide a basis for making forecast selection
decisions. The topic of what to do when equal performance is accepted or rejected is still relatively
unexplored in the existing predictive ability testing literature. For example, there is no guidance
in that literature as to what to do in case of acceptance of equal unconditional performance. When
adopting a conditional perspective, instead, both acceptance and rejection of the null hypothesis
may be starting points for real-time forecast selection. In case of acceptance, forecast combination
seems to be a natural candidate, as was noted by a referee. If, on the other hand, one of the
competing methods is already a forecast combination, the principle of parsimony suggests using
the simpler method. We leave further consideration of this issue for future work.

In this section, we focus instead on the implications of rejecting equal conditional predictive
ability and describe a simple method for adaptively selecting at time T' a forecasting method for
T + 7. The basic idea is that rejection occurs because the test functions {h:} can predict the loss
differences {AL,, 4} out-of-sample, which suggests using hz to predict which method will yield

lower loss at 1"+ 7. We propose the following two-step procedure:

1. Regress ALy, 117 = Liyr(Yiyr, fmﬂg) — Ly 7(Yiyr, Gmst) on hy over the out-of-sample period
t=m,...,T — 7 and let &, denote the regression coefficient. Apply Theorem 5 to establish

whether &, is significantly different from zero. If so, proceed to step 2.

2. The approximation &, hr ~ E[ALy, 14| Fr] motivates the decision rule: use g if &),hy > ¢

and use f if &, hr < ¢, with ¢ a user-specified threshold (e.g., ¢ = 0).

We offer this procedure as a simple example of how our tests can be used in forecast selection.

*Diebold and Mariano (1995) also acknowledge that 7—step-ahead errors may not be (1 — 1)-dependent, but find
that the assumption of (7 — 1)-dependence works well in practical applications and suggest using it as a benchmark.

In the remainder of the paper, we adopt this approach.
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More sophisticated approaches immediately suggest themselves, but the subject of forecast selection
is a significant topic that deserves extensive focused attention, beyond that possible in the space
available here. Accordingly, we restrict attention here to this simple procedure and take up more
elaborate methods and their application elsewhere.

In general, the plot of out-of-sample period predicted loss differences {d;mht}tT:_,; is useful for
assessing the relative performance of f and g at different times. One can further summarize relative
out-of-sample performance by computing the proportion of times the above decision rule chooses
g, ie, Ine=n""1 ZZ;; 1{&) hy > c}, where 1{A} equals 1 if A is true and 0 otherwise. We report

these proportions for our empirical application in Section 6.

5 Monte Carlo evidence

We investigate the size and power properties of the tests of conditional and unconditional predictive

ability in finite samples of the sizes typically available in macroeconomic forecasting applications.

5.1 Size properties

The goal of our first Monte Carlo experiment is two-fold: first, to consider a situation where our
null hypothesis of equal forecasting method accuracy is satisfied when comparing nested models
and second, to contrast our test with tests for equal forecasting model accuracy previously available
(McCracken, 1999 and Clark and McCracken, 2001). We highlight the flexibility of our approach
by presenting results for both a quadratic and a linex loss function. For comparability, we restrict
attention in this subsection to the unconditional test and to the one-step forecast horizon.

The idea is to consider a situation where the tradeoff between misspecification and parameter
estimation uncertainty is such that forecasts from a small, misspecified model are as accurate as

those from a larger, correctly specified model. Thus, let the data-generating process (DGP) be:
Y; = a+ CPI; + ¢, & ~i.i.d.N(0,0%), (9)

where C'PI,; is the second log-difference of the monthly U.S. consumer price index over the pe-
riod 1959:1-1998:12. We use an actual time series in order to create data that exhibit realistic

heterogeneous behavior. > The two competing forecasting models are:

M1 : Y, =pBCPI; + uy
M2 Y;:(H—’yCPIt—i—ugt.

To assess the heterogeneous behavior of C'PI;, we performed the Andrews-Ploberger (1994) test for a structural
break in the unconditional mean and in the first autoregressive coefficient of C'PI;. The test detected no breaks in

mean but found evidence of a break in the autoregressive coeflicient (the p-value for the test of no break was 0.056).
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The one-step-ahead forecasts of Y1 implied by the two models are, respectively,

f7(nl)t = Bm,tCPItJrl (10)
fy(ri)t = Sm,t'{"?m’tCPItJrla

estimated by OLS over a sample of size m. Here and in the following, we treat C PI as known.
For each pair of estimation window size m and out-of-sample size n in the range (25, 50, ..., 150),
we find values of a in (9) such that the two forecasting methods have equal expected MSE, using

the following result.

Proposition 7 Let X; = CPI; X :izj 1 X5 Sm_zj e m+1X -mX% Y, =3E!
and ZjEZj:t—m—f—l' If

Y. X2 Xx? e X?
£y oy 2l 9 X =

2
Do (1 % Jth+1>

=0

: (11)

then B[4 32, L(Yer, Jiu))| = B[4 50 LVt 20| where L(Yegn, ) = (Yeer = )2

Using « from Proposition 7, ¢ = .1 and the last T' = m + n C'PI observations, we generate 5000
Monte Carlo replications of Y; from (9) and compute rolling window forecasts as in (10).

To examine the robustness of the size properties of our test to the choice of loss function and
illustrate the flexibility of our method, we further consider a linex loss function. We generate
5000 replications of Y; from (9) as described above, using values of a such that the two forecasting

methods have equal expected average linex loss, obtained as follows.

Proposition 8 Using the notation of Proposition 7, if a solves F(«) = 0, where
R 02 Xii > X
Fla) = Z{exp [a (1— 2Xt+1 1+ +2 —a|l-=—=5X1 | (12)
t Z] XJ Z X Zj Xj
o2 X2 X2 X
exp [2 + S + S, S t+1 )

then B |+ 52 L(Yir1, )] = B [ 5, LG, S50, with L(Visr, f) = exp(Yerr = f) = (Yier =
f) =1

We find values of « that solve the equation in Proposition 8 by numerical techniques. Table 1
reports the rejection frequencies of the hypotheses of equal forecasting method accuracy using

quadratic and linex loss for a 5% nominal level using the test of Theorem 6. The truncation lag for
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the HAC estimator is p,, = 0.5 For the quadratic loss, the table also shows the rejection frequencies
for the test of equal forecasting model accuracy of McCracken (1999) and Clark and McCracken
(2001) (henceforth the CM test), which relies on the same test statistic but uses critical values
obtained by simulation from a non-standard asymptotic distribution. For linex loss, the CM test
cannot be applied as it requires the same loss function for estimation and evaluation, whereas we
estimate by OLS and not by linex maximum likelihood. [TABLE 1 HERE]

The table reveals that our test is generally well-sized, particularly when the estimation window
m is small relative to the out-of-sample size n (for given m, the size tends to improve as n increases).
This is true for both quadratic and linex loss functions, although for the linex loss the test appears to
be slightly oversized. Before discussing the rejection frequencies of the CM test, we emphasize that
these do not represent the empirical size of the CM test, since this tests a different null hypothesis:
for CM the losses are functions of population values of the parameters rather than parameter
estimates, so the CM test is focused on the forecasting model rather than the forecasting method.
Table 1 shows that in our scenario the CM test rejects the hypothesis that the forecasting models
are equally accurate in favor of the larger model” more often than our test rejects its null hypothesis.
In other words, by rejecting its null hypothesis relatively more frequently, the CM test signals that
the larger forecasting model is superior in cases where the forecasting method based on the larger
model is not superior. The disparity of conclusions between the two tests is greater when m is
small relative to n (our test rejects 5% of the time whereas the CM test rejects up to 50% of the

time). Interestingly, the two tests have comparable rejection frequencies when m is equal to n.

5.2 Power properties

We next investigate the power of our unconditional and conditional predictive ability tests in two

directions: (1) against serially correlated loss differences; and (2) against the performance being

different in different states of the economy.

5.2.1 Power against serial correlation in relative performance

Here we consider the alternative that the loss differences ALy, ;41 follow an AR(1) process:
ALm7t+1 = ,U,(l - p) + pALmﬂg + Et+1y Et41 ZZdN(O, 1) (13)

For each of 5000 Monte Carlo replications, we use (13) to generate a sequence of loss differences

of length n = 150 starting from an initial value AL, ,, that equals the difference in squared

5We also considered selecting p,, using either the data-dependent method of Andrews (1991) or the popular simple
alternative p, = .75n'/3, satisfying Andrews’ (1991) optimal rate condition. The results, available upon request,
suggest these alternative choices lead to slightly worse size properties, even though in the majority of cases Andrews’

method selected p, = 0 as the optimal bandwidth.
"The alternative hypothesis for the CM test is that the larger model is more accurate.
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errors for forecasts of C'Pliggg.12 implied by (i) a white noise and (ii) an AR(1) model for CPI
estimated over a window of size m = 150 using data up to 1998:11. We consider two scenarios:
(1) the loss differences are not serially correlated (p = 0) but have non-zero unconditional mean;
(2) the loss differences have zero unconditional mean (= 0) but are serially correlated (and thus
the unconditional null hypothesis is still satisfied). The corresponding parameterizations are: (1)
p=0, u=1(0,0.05,...,1); and (2) =0, p = (0,0.05,...,0.9).

Figure 1 shows the power curves of the tests of Theorems 1 (conditional) and 6 (unconditional)
in scenarios (1) and (2) above computed as the proportion of rejections of the null hypotheses
Hy.cond and Ho ync at the 5% nominal level. In all cases, we let hy = (1, ALy, )’ for the conditional
test and p, = 0 for the unconditional test. [FIGURE 1 HERE]

The left panel of Figure 1 reveals that using the conditional rather than the unconditional test
even though there is no serial correlation in the loss differences involves only a small loss of power.
From the right panel of Figure 1, on the other hand, we see that the conditional test has appealing
power properties but that the unconditional test suffers severe size distortions as the loss differences
become more serially correlated (the power curve is upward sloping, whereas it should be flat since

Ho une is satisfied), a possible consequence of not using a more involved method for choosing py,.

5.2.2 Power against different performance in different states

We next consider a situation where the two forecasts have equal predictive ability unconditionally,
but each forecast is more accurate in a given state of the economy. For each of 5000 Monte Carlo

replications, we generate a sequence of loss differences of length n = 150 as follows:

ALy 41 =

,U_ )<St — p) -+ Et+1, Et+1 ™ lZdN(O, 1),

p(l—p
where S; = 1 with probability p and S; = 0 with probability 1 — p. We thus have E [ALy,111] =0
1/p if Sp=1

—p/(L—p) if S =0
state and forecast 1 is more accurate in the second state. Figure 2 shows the rejection frequencies

but E[ALp, 11| = { , so that forecast 2 is more accurate in the first

of the null hypotheses Hy conqg and Hoyne at the 5% nominal level using the tests of Theorems 1

and 6. The power curves are obtained for p = .5 and d = p(fip) = (0,0.1,...,1) (d represents the
difference in expected loss between the two states). We let hy = (1,S;)’ for the conditional test and
pn, = 0 for the unconditional test. [FIGURE 2 HERE]

As expected, the conditional test has power to detect different performance in the different
states, whereas the rejection frequencies for the unconditional test remain constant at the empirical

size. Unlike the previous case, the unconditional test does not suffer size distortion.
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6 Application: comparing parameter-reduction methods

A problem that often arises in macroeconomic forecasting is how to select a manageable subset of
predictors from a large number of potentially useful variables. In this situation, one key determinant
of the resulting forecast performance is the trade-off between the information content of each
series and the estimation uncertainty introduced. The goal of our application is to analyze and
compare the forecast performance, both conditionally and unconditionally, of three leading methods
for parameter reduction: a sequential model-selection approach based on a simplified general-to-
specific modelling strategy (Hoover and Perez, 1999), the “diffusion indexes” approach of Stock
and Watson (2002), and the use of Bayesian shrinkage estimation (Litterman, 1986). We also
compare each method to simple autoregressive and random walk benchmark forecasts. The DMW
testing framework cannot be used here since some of the comparisons are between nested models
and, further, that framework does not easily accommodate Bayesian estimation or the presence
of estimated regressors. In contrast, our approach is well suited for comparison of methods based
on nested models and for detecting differences in predictive ability arising from use of different
modelling and estimation techniques.

We consider the “balanced panel” subset of the data set of Stock and Watson (2002) (henceforth
SW), including 146 monthly economic time series measured over the period 1959:1-1998:12. We
use the different parameter reduction methods to construct 1-, 6- and 12- month-ahead forecasts
for eight U.S. macroeconomic variables: four measures of aggregate real activity and four price
indexes. The first group includes the components of the Index of Coincident Economic Indicators
maintained by the Conference Board: total industrial production; real personal income less trans-
fers; real manufacturing and trade sales; and number of employees on nonagricultural payrolls.
The price indexes are: consumer price index; consumer price index less food; personal consumption

expenditure implicit price deflator; and producer price index.® See SW for full details.

6.1 Parameter-reduction methods

All forecasting models project the 7—step ahead variable Y}’ . onto time-t predictors X; and lags of
the variable of interest Y, Y;_1 .. The dependent variable and the predictors are transformations of
the original data: if RAW, is the observation at time t, we define Y7, . = (1200/7) log(RAW;4../ RAW}),
Xy = 1200log(RAW; /RAW;_1) , Y; = 1200 log(RAW; /RAW;_1) for the real variables and Y}, , =
(1200/7) log(RAW -/ RAW;)—1200 log( RAWy | RAW; 1), X = 1200A log(RAW, /RAW,_1), Y; =
1200A log(RAW;/RAW,_) for the price indexes. We consider the following forecasting methods.

8These variables coincide with the variables forecasted by SW, with the exception of the consumer price index
less food which replaces the consumer price index less food and energy series considered by SW (not included in the

data set available to the authors).
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6.1.1 Sequential model selection

This method considers the full set of 145 predictors, together with lags of the variable of interest and
performs a sequential search on each estimation sample that retains only a subgroup of variables

that are then used for forecasting. The initial model is
Vi, =a+ X +7Yi+ .+ 965 + et (14)

where X; is a vector containing the 145 predictors.” We apply a simplified version of the algorithm
described by Hoover and Perez (1999, p.175), which reduces the number of regressors in the model
by performing a sequence of stability tests, residual autocorrelation tests, and t— and F'— tests of
significance of the regressor’s coefficients. We consider a single reduction path and perform only a
subset of the tests used by Hoover and Perez (1999). We use a significance level a = 0.01 for all the
tests, designed to encourage parsimony of the final model. A complete description of our algorithm

is available upon request from the first author.

6.1.2 Diffusion indexes

This two-step method first uses principal component analysis to estimate k factors F, from the

predictors X; (1 < k < 12) and then considers the model with p lags
Vi, =a+B8F+mYi+... +7Yipr1 +err, (15)

where both k£ and p are selected by BIC.

6.1.3 Bayesian shrinkage estimation

This method considers the full model (14) and applies Bayesian estimation of its coefficients using
the Litterman (1986) prior. The Litterman prior, when applied to variables expressed in differences,
shrinks all coefficients in (14) towards zero, except that for the intercept a diffuse prior is used.
Formally, the variance-covariance matrix V' for the prior distribution of § = («, ',7')’ is diagonal,
with a ~ N(0,10%), 8; ~ N(0, (w-A-6y/64,)%),i=1,...,145 and v, ~ N(0,(A/5))?), 5 =1,...,6. As
suggested by Litterman (1986), we set w = 0.2 and A = 0.2, but the results were robust to a number
of different choices for w and X.'° The Bayesian estimate of 6 is then 8 = (X' X +62V-1)"1(X'Y7),

9We overcome multicollinearity in X, by replacing the groups of variables whose correlation is greater than .98

with their average. The new X, contains 130 regressors.
10X is the prior standard deviation of the Y; coefficient. The prior standard deviation of subsequent lags of Y;

is further divided by the lag length to reflect higher confidence in the prior mean for longer lags. w is a number
between zero and one that reflects the belief that X is less useful for forecasting than lagged values of the dependent
variable. The prior standard deviation of 3, is further multiplied by the ratio of the sample standard deviations of

the dependent variable and of the ith regressor &, /54,, to eliminate differences in scale.
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where X is m x 152 (m is the size of the estimation sample) with rows (1, X/, Y, Y1, ..., Yi_5),
Y7 is m x 1 with elements Y/, ., & is the estimated standard error of the residuals in a univariate

autoregression for Y}, ., and V' is the covariance matrix implied by our prior.

6.1.4 Benchmarks
The first benchmark is an autoregressive (AR) model
Vi =a+7Yit+.. +7Yept1 +etgr, (16)

where p is selected by BIC with 0 < p < 6. The second benchmark is based on a random walk in

levels, corresponding to the forecasting model in differences

Vi, =a+ep,. (17)

6.2 Real-time forecasting experiment

We use the five methods above to simulate real-time forecasting. The available sample has size
T = 468, and we choose a maximum estimation window m = 150 + 7. For comparability, we
apply the same transformations to the original series as those documented in Appendix B of SW.
The first estimation sample is from 1960:1 through 1972:6 + 7 (the first 12 data were used as
initial observations). We screen the data in this sample for outliers, replace the outliers with the
unconditional mean of the variable, standardize the regressors, estimate the diffusion indexes and
select the AR lag lengths and number of diffusion indexes by BIC. We run the regressions (14),
(15), (16), (17) and apply the Bayesian shrinkage method for ¢ =1960:1,...,1972:6 and use the values
of the regressors at time ¢ =1972:6 + 7 to generate a set of forecasts for Y{g79.6,5,. We then move
the estimation window forward one period and repeat all of the above steps on data from 1960:2
through 1972:7 + 7, which generates the forecasts for Yyy,9.7, 5. The final forecasts for Y ggg.15 are
produced at t =1998:12 — 7. The out-of-sample size is n = 318 — 7.

In Section 2.1, we mentioned that our procedures can be used to provide direct evidence as to
the advantages or disadvantages of limited memory estimators. Specifically, one can compare the
estimated loss from using a limited memory estimator (e.g., a rolling window estimator) to that of
an expanding data window procedure. We do not provide a formal test based on this comparison
here. Instead, however, we illustrate the information available for assessing the value of rolling
window procedures by comparing their performance to that of forecasts of industrial production
and consumer price index for all models and forecast horizons using an expanding window of data
from 1960:1 onwards. Table 2 reports the relative MSEs of the rolling-window and expanding-
window forecasts. [TABLE 2 HERE]

The table shows that MSEs for rolling-window forecasts are most of the time much smaller

than those for expanding-window forecasts (ratios are as small as 0.01). In the remaining cases,
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the MSEs for the two procedures are virtually identical (with one exception, ratios are no greater
than 1.07). We see that the rolling window procedure can result in substantial forecast accuracy

gains relative to an expanding window for important economic time series.

6.3 Results of predictive ability tests

For each series of forecasts we conduct pairwise tests of equal conditional predictive ability of
the five forecasting methods, using a squared error loss'!. For 7 = 1,6, and 12, we test Hy :
E[(Yisr — fm’t)2 — (Yetr — 9mt)?|Gt] = E[AL++|Gt] = 0, for both G; = F; (conditional perspective)
and G; = {0, Q} (unconditional perspective).

For the case G, = F;, we use the test function: hy = (1, AL;)'. Tables 3 and 4 show the results
of conditional predictive ability tests for real variables and price indexes. The entries in the tables
are the p-values of pairwise tests of equal conditional predictive ability, using the test of Theorem
5. The numbers within parentheses below each entry are the indicators I, . discussed in Section
4, for ¢ = 0. A plus (minus) sign indicates rejection of the null hypothesis at the 10% level and
signals that the method in the column would have been chosen more (less) often than the method
in the row, as suggested by an entry I,, . greater (less) than .5. [TABLES 3 - 4 HERE]

A sharp result in the tables is that the sequential model selection method is characterized by
the worst performance, likely due to its tendency to select over-parameterized models (cases with
40 or more predictors in the final model were not uncommon). A second observation is that the
predictors seem less useful for forecasting price indexes than real variables. For price indexes, the
parameter-reduction methods do not generally outperform the AR benchmark. For real variables,
both Bayesian shrinkage and the diffusion indexes methods mostly outperform the benchmarks.
Bayesian shrinkage, however, often outperforms the diffusion indexes, thus emerging as the best
forecasting method for real variables.

The results for the unconditional case are reported in Tables 5 and 6. The main entries are the
p-values of pairwise tests of equal unconditional predictive ability of Theorem 6, and the numbers
within parentheses are the ratios of MSE for the method in the column relative to the method in
the row. A plus (minus) sign indicates that the method in the column outperforms (underperforms)
the method in the row at the 10% significance level, as evidenced by a relative MSE less (greater)
than 1. [TABLES 5 - 6 HERE]

The tables reveal that for the real variables the diffusion indexes and the Bayesian shrinkage
methods in most cases outperform both benchmarks and that Bayesian shrinkage further outper-
forms the diffusion indexes method roughly half the time. For price indexes, instead, the parameter-

reduction methods cannot generally outperform the AR.

"' The corresponding results for an absolute error loss function are available upon request.
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Two conclusions emerge from the comparison of the results for the conditional and the uncondi-
tional tests. First, in some of the comparisons there is evidence of superior conditional performance
even though we cannot reject equal unconditional performance (e.g., diffusion indexes versus AR
forecasts of CPI). This suggests that in those cases, even though the two methods performed on
average equally well over the out-of-sample period, their relative performance could have been pre-
dicted by lagged relative performance. A second conclusion is that even though rejection of the
unconditional hypothesis should imply rejection of the conditional hypothesis, in some cases the
unconditional tests reject equal performance while the conditional tests fail to do so. This could
either be due to the unconditional test being oversized or to the conditional test having low power.
Our Monte Carlo simulations suggest that the more plausible explanation is the size distortion of

the unconditional test and its sensitivity to lag length selection for the HAC estimator.

6.4 Decision rule assessment

To assess the effectiveness of the decision rule proposed in Section 4, we evaluate the performance of
the “hybrid” forecast obtained by recursively applying the decision rule to select the best forecast
for the next period. We consider the sequence of quadratic out-of-sample losses for 1-, 6-, and 12-
months-ahead forecasts of Industrial production obtained by the 5 forecasting methods, as described
in Section 6.2. For each pair of forecasting methods and for each forecast horizon, we derive the
hybrid forecast sequence by applying the two-step decision rule (using hy = (1, AL;)") on a rolling
window of size 200, except that we proceed to step 2 regardless of the test outcome. We evaluate
the performance of the hybrid forecast and contrast it to that of the forecasts in the pair by (1)
comparing the MSE of the hybrid forecast to the MSE of the individual forecasts; and (2) testing
optimality of each forecast for quadratic loss. The entries in Table 7 equal 1 if the MSE of the
switching forecast is less than or equal to both the MSEs of the individual forecasts. The table
reveals that in 26 out of 30 cases the switching forecast is at least as accurate as the individual
forecasts. [TABLE 7 HERE]

We tested forecast optimality by regressing the forecast errors on a constant and one lag of the
forecast errors. Optimality is rejected if one rejects that the coefficients are jointly zero at the 5%
level. We found that in all but two cases (sequential method vs. AR and RW at the 12-month
horizon), if at least one of the individual forecasts is optimal, the switching forecast is also optimal.
If they are both suboptimal, so is the switching forecast. To conserve space, we do not tabulate
these results here. Detailed results are available from the first author upon request.

Overall, we observe that our simple decision rule behaves reasonably and adds useful informa-
tion, suggesting that the model selection implications of our testing approach may be a promising

direction for future research.
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7 Conclusion

We propose a general framework for out-of-sample predictive ability testing and forecast selection
that is particularly well-suited to the presence of heterogeneity in the data. Our method can be
applied to evaluation of point, interval, probability, and density forecasts for a general loss function.

We depart from the approach to predictive ability testing of Diebold and Mariano (1995) and
West (1996) by evaluating the accuracy of a particular forecasting method, rather than that of the
forecasting model. That is, we consider an environment in which estimation uncertainty in the
forecasting model’s parameters does not vanish asymptotically, which gives our tests several advan-
tages over the previously available tests: they directly capture the effect of estimation uncertainty
on relative forecast performance; they can handle comparison of forecasts based on both nested
and non-nested models; and they allow the forecasts to be produced by general parametric, semi-
and non-parametric estimation techniques.

Our framework can accommodate both unconditional objectives (“which forecasting method
was more accurate on average?”), that have been the sole focus of the literature up to this point, as
well as conditional objectives (“can we predict which forecasting method will be more accurate at a
specific future date?”), which can help fine-tune the forecast selection decision to current economic
conditions. We accordingly propose two tests: a test of equal conditional predictive ability and a
test of equal unconditional predictive ability, which is the Diebold and Mariano (1995) test extended
to an environment permitting parameter estimation.

Our Monte Carlo simulations suggest that our conditional tests have good finite-sample size
and power properties. For the unconditional test, we show that when comparing nested models
our test correctly recognizes that forecasts from a misspecified but parsimonious model may be as
accurate as forecasts from a correctly specified but less parsimonious model. Previously available
tests (McCracken, 1999 and Clark and McCracken, 2001) instead focus on the model rather than
the forecasting method, and thus tend to favor the less parsimonious model. The disparity between
the two approaches is greater the smaller the ratio of in-sample to out-of-sample sizes. A drawback
of the unconditional test implemented here is that it tends to falsely reject equal performance
when the loss differences have zero mean but are highly serially correlated. This may be possible to
remedy by more careful selection of HAC covariance estimators. On the other hand, the conditional
tests emerge as useful tools for detecting persistence in the relative performance of the forecasts,
as well as cases where the relative performance may depend on the state of the economy.

We explore the model selection implications of adopting a conditional perspective by proposing
and illustrating a simple two-step decision rule for forecast selection that tests for equal performance
of the competing forecasts and then - in case of rejection - uses currently available information to

select the best forecast for the future date of interest.
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One useful application of our framework is the evaluation of different parameter-reduction
methods for forecasting with a large number of predictors. We consider three popular methods: a
sequential model selection approach; the “diffusion indexes” approach of Stock and Watson (2002);
and the use of Bayesian shrinkage estimation. Using the data set of Stock and Watson (2002),
including monthly U.S. data on a large number of macroeconomic variables, we generate multi-step
forecasts of four measures of real activity and four price indexes using the different forecasting
methods. Previous techniques are not capable of comparing these forecasting methods. We find
that the simplified sequential model selection method performs worst, probably due to its tendency
to select large models. A second result is that the predictors appear less useful for price indexes
than real variables. For these variables, Bayesian shrinkage is the best method.

Much work remains to be done. A significant area for future research is the exploration of
procedures for selecting the best forecasting method or for optimally combining the methods in
case of rejection of equal conditional predictive ability. A further generalization of our tests is
to consider multiple comparisons, for example by adapting the “reality check” approach of White
(2000) to the conditional framework. Finally, it may be possible to obtain asymptotic refinements
of the tests presented here by using bootstrap resampling techniques, for example by establishing

whether the results of Andrews (2002) can be extended to heterogeneous data.

Appendix. Proofs

Proof of Theorem 1. Under Hy, {Zmn4,Fi} is an mds, and we can apply an mds central
limit theorem (CLT) to show that Qﬁlﬂ\/ﬁzmm <, N(0,I) as n — oo, from which it follows
that T,f}w <, X?I as n — co. The mds CLT we use requires conditions such that Q, — Q, 2 0,
where Q,, = var[y/nZy,,). Write Zm,t+1Z7’n’t+1 = f(ht, Wes1, oo, Wi—), where f(-) is a mea-
surable function. Since {W;} and {h;} are mixing by (i), and f is a function of only a finite
number of leads and lags of W; and hy, it follows from Lemma 2.1 of White and Domowitz (1984)
that {Zmt+12y,,41) 18 also mixing of the same size as W;. To apply a law of large numbers
(LLN) to Zpm,t+12Z, 141, we further need to ensure that each of its elements has absolute r + ¢ mo-
ment bounded uniformly in ¢. By the Cauchy-Schwarz inequality and (ii), F |Zm7t+1’iZm7t+1,j\”+5 <
[E|Z7%%t+1’i|”‘*'5]1/2[E|Z72n,t+17j|”"'5]1/2 < AV2AY2 < 0,4,§ =1, ...,q and for all t. That ,,—Q,, 2 0
then follows from McLeish’s (1975) LLN as in Corollary 3.48 of White (2001). €2, is finite by (ii),
and it is uniformly positive definite by (iii). We apply the Cramér-Wold device and show that for
all A € RY, NA =1, N /2 /nZmn > N(0,1), which implies that Q0 /% \/nZmn = N(0,1). Con-
sider )\/leﬂ\/ﬁme = n~1/2 Zz:nll A’Q;1/2Zm7t+1, and write A’Q;1/22m7t+1 =37, S\iZmJ;_'_LZ'.

The variable S\iZm,tH’i is measurable with respect to F;, and the linearity of conditional expecta-
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tions implies that

)

E[/\,Q;1/2Zm,t+1 ’.7:15 Z m g+, zu:;&] — 0

given (3). Hence {\'Q 71/2Zm,t+1, Fi} is an mds. The asymptotic variance is 52 = var [)\'Qﬁlﬂ\/ﬁzm,n]
Ny, 2 var[y/nZm, n)Q 02\ =1 for all n sufficiently large. We have

T-1
Y NP2 1 2 0 AT = N 20, QAN Q20,0012 = () —g() 5 0,

t=m

since O, — Q,, 2 0 and by Proposition 2.30 of White (2001). Further, by Minkowski’s inequality,

£S

EINQY2 7, P = B i;\izm’ﬂru‘%-d < [Z N (| Zomr o PHO)H @FO]240 o
i=1 i=1

the last inequality following from (ii). Hence, the sequence {\ 027, t+1, Fi } satisfies the condi—
tions of Corollary 5.26 of White (2001) (CLT for mds), which implies that N2, 2 2\/_ Zmn —
N(0,1). By the Cramér-Wold device (e.g., Proposition 5.1 of White, 2001), Q 51/2\/152%“ —
N(0,1), from which the desired result follows by consistency of €, for €,,. m

Proof of Corollary 2. The (constant unadjusted) R? for the regression of the constant unity
on the variables Z,, ;1 = (hy ALy, 41) can be written as R? = o/ Z,,[ 2], Zn] ' Z),0/t'1, where ¢ is
an n x 1 vector of ones and Zy, is the n x ¢ matrix with rows Z}, ;. ;. Since Qn = Z! Zm/n, it thus
follows that nR% = n(v/ Zy, /n)0 1 (Z! 1/n) = Th, =

Proof of Corollary 3. The (constant unadjusted) R? for the regression of ALy, ;11 on A}
can be written as R? = AL'h[h'h]"*h'AL/AL'AL, where AL is the n x 1 vector with elements
ALy, 141 and h is the n x ¢ matrix with rows h;. We thus have nR? = nZ,’n,n(&nVn)*lzmm, where
n = AL'AL/n and V,, = k’h/n. We will show that 6,V,, — Q, 2L, 0, which implies that the two
statistics Tf}m and nR? are asymptotically equivalent and thus the conditional predictive ability
test can be alternatively based on the statistic nR?. By the law of iterated expectations

T-1
Qn=n"" E[h(ALpgi1)’hy] =n" Z E[ME[(ALp 1) Fh'] = o> E[W h/n],

t=m

where the last equality follows from assumption (v). Given assumptions (i) and (ii)’, the sequences
{heh}} and {(ALp¢41)?} satisfy a LLN and it thus follows that V,, — E[h'h/n] % 0 and &, — 0% =
6n—E[6,] 2> 0, where the last equality is implied by (v). Hence, 6,Vy,—Qy = 6, Vyy—02E[W'h/n] 5
0, and the proof is complete. m

Proof of Theorem 4.  Given Assumption (i), it follows from Lemma 2.1 of White and
Domowitz (1984) that {Z,, 11} is mixing of the same size as W, since it is a function of only a
finite number of leads and lags of W; and h;. Further, each element of Z,, ;11 is bounded uniformly
in ¢ by (ii). McLeish’s (1975) LLN (cf. White, 2001, Cor. 3.48) then implies Zy,, — E[Zm.n] = 0.
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By definition, under Hy, there exists € > 0 such that E[Z}, ,|E[Zmn,] > 2¢ for all n sufficiently
large. Then

Pl ZynZommn > €] = PlZy, Zomm—E[Z}, o ElZmn) > —€) > Pl| 2}, pZmn—E[Zy, ) E| Zmp)| < €] — 1.
(18)
By arguments identical to those used in the proof of Theorem 1, {Zy, +41Z, .1} is mixing of the
same size as Wy by (i) and each of its elements is bounded uniformly in ¢ by (ii). McLeish’s (1975)
LLN then implies that {0, — Q, RN 0, with €, uniformly positive definite by (iii). The conditions
of Theorem 8.13 of White (1994) are then satisfied, and the theorem implies that for any constant

ceR, P[T,’}%n>c]—>1&sn—>oo. |

Proof of Theorem 5. (a) Under Hy, we show that Qﬁl/z\/ﬁzmm <, N(0,I) as n — o0,
from which (a) follows. First, we apply the Cramér-Wold device and show that for all A € RY,
N =1, A’Q;l/Q\/ﬁZm,n <, N(0,1), where Q,, = var[y/nZy ), using the fact that E[Z, 11+, |F] =
0. Q, is finite by (ii) and it is uniformly positive definite by (iii). Write A, Y 2\/ﬁZm7n =
n~1/2 ZT A0 _1/ 2Zm t+r- We verify that the scalar sequence {\' (2, ~1/ 2Zm,t+7} satisfies the con-
ditions of the Wooldridge and White (1988) CLT for mixing processes. By arguments identical

—1/2 . .
/ Zm t+r} is mixing of the same size as W;. Fur-

to those used in the proof of Theorem {\'Q,
72 = var[\N'Q 1/2\/_Zm n) = N, 2 var[\/nZm n)Q 02 =1>0foralln sufficiently large.

Finally, by Minkowski’s inequality,

ther, o},

q q
E|>\/ 1/2Z t+7_|2+5 _ E| Z)\iZm,t+Ti|2+6 S [Z Ai(E|Zm,t+Ti|2+6)1/(2+5)]2+6 < 0,
i=1 i=1

-1/ 2Zm ++r} satisfies the conditions

the last inequality following from (ii). Hence, the sequence {\'§2,
of Corollary 3.1 of Wooldridge and White (1988), which implies that \'Q;, oY 2\/_ Zmn 4N (0, 1)
By the Cramér-Wold device (e.g., Proposition 5.1 of White, 2001), we have that €, 1/2\/ﬁZm7n —

N(0,1). It remains to show that Q, — 0, 2 0, which completes the proof. We have

Qn -, = n! Z[Zm7t+TZ;n,t+T - E(Zm7t+TZ;n,t+‘r)]+

T—T1

-1 ! ! ! !
Z Wn,j Z m t+TZm t+T—7 E(ZmiJrTZm?t—i—T—j) + Zm,H’T*j Zm,t-H’ - E(Zm7t+7'*j Zm,t—l—T)] :
t=m+j

For j=0,....,7 — 1, {Zm7t+TZ7ln,t+Tfj} is mixing of the same size as W; and each of its elements is
bounded uniformly in ¢ by (ii). Applying McLeish’s (1975) LLN (e.g., Corollary 3.48 of White, 2001)
and using the fact that w,; — 1 for n — oo, it follows that n=tw,, ; Zt i (Zm 4112

myt+r—35
A

)] £ 0 for each j =0,...,7 — 1 (with w0 = 1), implying Q,, — Q, 20.
(b) Using the same arguments as in (a), {Z,, 4} is mixing of the same size as W;. Further,

each element of Z,, ;4, is bounded uniformly in ¢ by (ii). McLeish’s (1975) LLN (as in Corollary
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3.48 of White, 2001) then implies that Z, , — E[Zmn] 2. By definition, under H 4 j, there exists
€ > 0 such that E[Zy’nn]E[Zmn] > 2¢ for all n sufficiently large. We then have

P(Zy, nZomm > €) 2> P[Z}, Zmn—E[Z), y)EZmn) > —€] > Pl|Zy,  Zmn—E[Z}, ) E[Zmp)| < €] — 1.
(19)

By arguments identical to those used in part (a) - which for this particular result do not require
the time dependence structure imposed under the null hypothesis - it follows that Qp—Qp 2 0,
with Q,, uniformly positive definite by (iii). Theorem 8.13 of White (1994) then implies that for
any constant ¢ € R, P[Tvl}z,n,r >cl—lasn—o00. W

Proof of Theorem 6. (a) We separately show that, under H, \/ﬁAZ’% LA N(0,1), where
02 = var[y/nALp,,] and that &, — o, % 0, from which the result follows. o2 is finite by (ii) and
it is positive for all n sufficiently large by (iii). Write \/ﬁ% = n1/2 tT:_ﬂ: op Y ALy tir and
consider the scalar sequence {0, * AL, 4+, }. We verify that this sequence satisfies the conditions
of Wooldridge and White’s (1988) CLT for mixing processes. By arguments similar to those used
in the proof of Theorem 1, {0,,'!AL,;1,} is mixing of the same size as W;. Further, by (ii),
E|o, ALy, 14+|**° < 0o. Hence, the sequence {0, ' ALy, 1.} satisfies the conditions of Corollary
3.1 of Wooldridge and White (1988), which implies that \/ﬁAZ’% 4N (0,1). By similar arguments
as above, { ALy, 14} is mixing of the same size as W;, which implies that {ALy, ¢4, } is also mixing
with ¢ of size —r/(r —1) or « of size —2r/(r — 2). This, together with assumption (ii) and with the
fact that E(ALp,t+r) = 0 under Hy, implies that the conditions of Theorem 6.20 of White (2001)
are satisfied, and thus &,, — oy, — 0, which completes the proof.

(b) As shown in (a), {ALy, 4-} is mixing of the same size as W;. Further, ALy, 11, is bounded
uniformly in ¢ by (ii). McLeish’s (1975) LLN (as in Corollary 3.48 of White, 2001) then implies
that AL, — E[ALpm.») 2, 0. Under H, there exists ¢ > 0 such that (E[ALpp])? > 2¢ for all n

sufficiently large. We then have
P[ALZ,, > €] > P[ALZ,,, — (E[ALpp))? > —€] > P[|ALZ, ,, — (E[ALmy])? <] = 1. (20)

By arguments identical to those used in part (a) 62 —o? 2,0, and o2 > 0 for all n sufficiently large
by (iii). From Theorem 8.13 of White (1994), it follows that for any constant ¢ € R, P[nAI_/?n’n/&i >
) = P[t2,,,, > ¢?] — 1 as n — oo, which implies that P[|tynr| > ¢ — 1asn —co. ®

Proof of Proposition 7. We have

%Z (Yt-l-l - ﬁ(,?ty] = %Z { (E [Yt+1 - fr(r?t]>2 + Var (Yt+1 - fé?t)} ,1=1,2.
t

t

E

R 2 R 2 X, 2
For i = 1, the bias term s (1 [Yiss B Xra]) = (o= Xewa (B B = 1)) = (1- 501

X2 . . .
X7 ) For i = 2, the bias term is

and the variance term is Var (Y}H — Bm7tXt+1) = o2 (1 +
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R 2
<E |:}/;j+]_ — Ot — ’AVm,tXtHD = 0 and the variance term is

Var(Yip1 = Omt — AmeXer1) = 02+ Var(0mg) + XEVar(fm.) + 2Xe11000(m s Y 1)

X2 Xx? X

2 Z.] J t+1

= 1+ 4+ —"L-_2—X .
7 ( - MSez * Sea Sra i

N 2 A 2
Letting [% > <Yt+1 - f;,ll)t) } =F [% o (Y}H — f,(r?)t) ] gives @ in (11) as a solution. m

Proof of Proposition 8. Given the assumption of normality, we have
LS (1 1) = £ fn (- 20)] - i 2] -1}
:%Zt:{exp <E [Ytﬂ—fﬁft} +%Var <Yt+1 i )) [Yt+1 f()} —1}

Substituting the expressions for £ [Y}H — f,(,j)t} and Var <Yt+1 I F(0) ) 1 = 1,2 from the Proof of

Proposition 7 and letting F(o) = { YL <Y}+1, fnl)tﬂ - { > L (YtH, g%)] gives (12). m
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Figure 1: Power curves for the conditional test of Theorem 1 and the unconditional test of
Theorem 6. Each curve represents the rejection frequencies over 5000 Monte Carlo replications of
the null hypothesis: Ho cond : E{ALpt+1|F:] = 0 and Ho yne : E[ALp t41] = 0. The DGP in the
left panel is such that E[ALy, +1|F;] = p and the horizontal axis plots different values of p. The
DGP in the right panel is such that E[ALy, +1] = 0 but E[ALy, ¢+1|F] = p(ALpy); p is plotted

on the horizontal axis.
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Figure 2: Power curves for the conditional test of Theorem 1 and the unconditional test of
Theorem 6. Each curve represents the rejection frequencies over 5000 Monte Carlo replications of
the null hypothesis: Ho cond : E[ALm+1]F:] =0 and Ho yne : E[{ALpt41] = 0. The DGP is such

that E[ALp, ¢+1] = 0 but E[ALp, 1+1|F:] = d(S¢ — p) where S;=1 with probability p and 0 with
probability 1 — p. The horizontal axis plots different values of d.
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Table 1. Rejection frequencies of unconditional predictive ability and McCracken (1999) tests

Unconditional predictive ability

A. Quadratic loss

McCracken (1999)

n n
m 25 50 75 100 125 150 m 25 50 75 100 125 150
25 .053 .041 .037 .032 .035 .024 25 087 .284 .360 .428 .481 .525
50 .062 .052 .044 .039 .037 .035 50 158 068 .245 .279 .300 .356
75 .062 .053 .048 .050 .040 .037 75 147 0 .168 070 218 .256 .279
100 .062 .054 .050 .055 .047 .043 100 .118 .152 .152 .062 .216 .241
125 .073 .056 .054 .049 .044 .042 125 120 .137 .146 .167 .063 .199
150 .061 .055 .056 .049 .048 .046 150  .091 .141 .134 157 .204 .058
B. Linex loss
Unconditional predictive ability
n

m 25 50 75 100 125 150

25 060 .057 .055 .050 .046 .046

50 066 .064 .062 .057 .061 .062

75 069 .067 .065 .066 .064 .058

100 .070 .067 .066 .065 .068 .074

125 .072 .071 .070 .075 .075 .077

150 .075 .077 .075 .076 .077 .073

Rejection frequencies over 5000 Monte Carlo replications of the test of Theorem 6 and of McCracken’s

(1999) test in the Monte Carlo experiment described in section 5.1, for nominal size .05. The DGP is

such that F % Y LY

+(1)

t+12J m,t

)| =Blis Ly

and L is either quadratic or linex. m is the estimation window size and n is the out-of-sample size.

#(2)
t+1° fm,t

Table 2. Relative MSE. Rolling and expanding window

)|, where f,g’)t and fg)t are defined in (10)

Industrial production

T Seq. Diff Ind Bayes AR RW
1 month 3.38 0.79 0.75 1.02 0.84
6 months  0.02 0.85 0.53 1.01 0.41
12 months  0.03 0.66 0.12 1.07 0.26

Consumer price index

Seq. Diff Ind Bayes AR RW
0.15 1.02 0.96 1.04 1.00
0.02 1.04 0.15 1.03 1.00
0.01 1.00 0.11 1.04 1.01

Ratios of MSEs of T—stepts ahead forecasts obtained by the forecasting methods in the column estimated

over either a rolling window of size m = 150 or an expanding window with the same initial size.
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Table 7. Decision rule assessment. Performance of the “hybrid” forecast of Industrial production.

Horizon = 1 month Horizon = 6 months Horizon = 12 months
Bench Seq. Diff Ind Bayes AR Seq. Diff Ind Bayes AR Seq. Diff Ind Bayes AR
Diff Ind 1 0 1
Bayes 1 1 1 1 1 1
AR 1 1 0 1 1 1 1 1 1
RW 1 1 0 1 0 1 1 1 1 1 1 1

The hybrid forecast is obtained by recursively applying the pairwise decision rule described in Section 4
(using a rolling window of size 200) to select between the method in the row and the method in the column.
Entries equal 1 if the MSE of the hybrid forecast is less than or equal to the MSEs of both the method in

the row and the method in the column and they equal 0 otherwise.
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